7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Structural basis for selectivity in a highly reducing type II polyketide synthase

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use.

          One of the most important aspects of macromolecular structure refinement is the use of prior chemical knowledge. Bond lengths, bond angles and other chemical properties are used in restrained refinement as subsidiary conditions. This contribution describes the organization and some aspects of the use of the flexible and human/machine-readable dictionary of prior chemical knowledge used by the maximum-likelihood macromolecular-refinement program REFMAC5. The dictionary stores information about monomers which represent the constitutive building blocks of biological macromolecules (amino acids, nucleic acids and saccharides) and about numerous organic/inorganic compounds commonly found in macromolecular crystallography. It also describes the modifications the building blocks undergo as a result of chemical reactions and the links required for polymer formation. More than 2000 monomer entries, 100 modification entries and 200 link entries are currently available. Algorithms and tools for updating and adding new entries to the dictionary have also been developed and are presented here. In many cases, the REFMAC5 dictionary allows entirely automatic generation of restraints within REFMAC5 refinement runs.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Polyketide biosynthesis: a millennium review.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Platensimycin is a selective FabF inhibitor with potent antibiotic properties.

              Bacterial infection remains a serious threat to human lives because of emerging resistance to existing antibiotics. Although the scientific community has avidly pursued the discovery of new antibiotics that interact with new targets, these efforts have met with limited success since the early 1960s. Here we report the discovery of platensimycin, a previously unknown class of antibiotics produced by Streptomyces platensis. Platensimycin demonstrates strong, broad-spectrum Gram-positive antibacterial activity by selectively inhibiting cellular lipid biosynthesis. We show that this anti-bacterial effect is exerted through the selective targeting of beta-ketoacyl-(acyl-carrier-protein (ACP)) synthase I/II (FabF/B) in the synthetic pathway of fatty acids. Direct binding assays show that platensimycin interacts specifically with the acyl-enzyme intermediate of the target protein, and X-ray crystallographic studies reveal that a specific conformational change that occurs on acylation must take place before the inhibitor can bind. Treatment with platensimycin eradicates Staphylococcus aureus infection in mice. Because of its unique mode of action, platensimycin shows no cross-resistance to other key antibiotic-resistant strains tested, including methicillin-resistant S. aureus, vancomycin-intermediate S. aureus and vancomycin-resistant enterococci. Platensimycin is the most potent inhibitor reported for the FabF/B condensing enzymes, and is the only inhibitor of these targets that shows broad-spectrum activity, in vivo efficacy and no observed toxicity.
                Bookmark

                Author and article information

                Journal
                Nature Chemical Biology
                Nat Chem Biol
                Springer Science and Business Media LLC
                1552-4450
                1552-4469
                May 4 2020
                Article
                10.1038/s41589-020-0530-0
                32367018
                2d538f63-40d3-4dbd-9f51-876d7890ff42
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article