4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bibliometric and visualization analysis of stem cell therapy for meniscal regeneration from 2012 to 2022

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Meniscus injuries, a common joint disease caused by long-term wear, trauma and inflammation, usually cause chronic dysfunction and pain in the joint. Current clinical surgeries mainly aim to remove the diseased tissue to alleviate patient suffering instead of helping with meniscus regeneration. As an emerging treatment, stem cell therapy has been verified to facilitate meniscus regeneration effectively. The purpose of this study is to investigate the publication conditions of stem cell therapy for meniscal regeneration and to visualize the research trends and frontiers.

          Methods: Relevant publications relevant to stem cells for meniscal regeneration was retrieved SCI-Expanded of the Web of Science database from 2012 to 2022. Research trends in the field were analysed and visualized by CiteSpace and VOSviewer.

          Results: A total of 354 publications were collected and analysed. The United States contributed the largest number of publications (118, 34.104%). Tokyo Medical Dental University has contributed the largest number of publications (34) among all full-time institutions. Stem cell research therapy has published the largest number of researches on stem cells for meniscal regeneration (17). SEKIYA. I contributed the majority of publications in this field (31), while Horie, M was the most frequently cited authors (166). #1 tissue engineering, #2 articular cartilage, #3 anterior cruciate ligament, #4 regenerative medicine, #5 scaffold are the chief keywords. This indicates that the current research hotspot has been transformed from basic surgical research to tissue engineering.

          Conclusion: Stem cell therapy is a promising therapeutic method for meniscus regeneration. This is the first visualized and bibliometric study to thoroughly construct the development trends and knowledge structure in the research field of stem cell therapy for meniscal regeneration in the past 10 years. The results thoroughly summarize and visualize the research frontiers, which will shed light on the research direction of stem cell therapy for meniscal regeneration.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Surgical and tissue engineering strategies for articular cartilage and meniscus repair

          Injuries to articular cartilage and menisci can lead to cartilage degeneration that ultimately results in arthritis. Different forms of arthritis affect ~50 million people in the USA alone, therefore it is crucial to identify methods that will halt or slow the progression to arthritis, starting with the initiating events of cartilage and meniscus defects. The surgical approaches in current use have a limited capacity for tissue regeneration and yield only short-term relief of symptoms. Tissue engineering approaches are emerging as alternatives to current surgical methods for cartilage and meniscus repair. Several cell-based and tissue-engineered products are currently in clinical trials for cartilage lesions and meniscal tears, opening new avenues for cartilage and meniscus regeneration. This Review provides a summary of surgical techniques, including tissue-engineered products, currently in clinical use, as well as a discussion of state-of-the-art tissue engineering strategies and technologies that are being developed for use in articular cartilage and meniscus repair and regeneration. The obstacles to clinical translation of these strategies are also included to inform the development of innovative tissue engineering approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration.

            Extensive scientific investigations in recent decades have established the anatomical, biomechanical, and functional importance that the meniscus holds within the knee joint. As a vital part of the joint, it acts to prevent the deterioration and degeneration of articular cartilage, and the onset and development of osteoarthritis. For this reason, research into meniscus repair has been the recipient of particular interest from the orthopedic and bioengineering communities. Current repair techniques are only effective in treating lesions located in the peripheral vascularized region of the meniscus. Healing lesions found in the inner avascular region, which functions under a highly demanding mechanical environment, is considered to be a significant challenge. An adequate treatment approach has yet to be established, though many attempts have been undertaken. The current primary method for treatment is partial meniscectomy, which commonly results in the progressive development of osteoarthritis. This drawback has shifted research interest toward the fields of biomaterials and bioengineering, where it is hoped that meniscal deterioration can be tackled with the help of tissue engineering. So far, different approaches and strategies have contributed to the in vitro generation of meniscus constructs, which are capable of restoring meniscal lesions to some extent, both functionally as well as anatomically. The selection of the appropriate cell source (autologous, allogeneic, or xenogeneic cells, or stem cells) is undoubtedly regarded as key to successful meniscal tissue engineering. Furthermore, a large variation of scaffolds for tissue engineering have been proposed and produced in experimental and clinical studies, although a few problems with these (e.g., byproducts of degradation, stress shielding) have shifted research interest toward new strategies (e.g., scaffoldless approaches, self-assembly). A large number of different chemical (e.g., TGF-β1, C-ABC) and mechanical stimuli (e.g., direct compression, hydrostatic pressure) have also been investigated, both in terms of encouraging functional tissue formation, as well as in differentiating stem cells. Even though the problems accompanying meniscus tissue engineering research are considerable, we are undoubtedly in the dawn of a new era, whereby recent advances in biology, engineering, and medicine are leading to the successful treatment of meniscal lesions. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mesenchymal stem cells for the treatment of neurodegenerative disease.

              Mesenchymal stem cells/marrow stromal cells (MSCs) present a promising tool for cell therapy, and are currently being tested in US FDA-approved clinical trials for myocardial infarction, stroke, meniscus injury, limb ischemia, graft-versus-host disease and autoimmune disorders. They have been extensively tested and proven effective in preclinical studies for these and many other disorders. There is currently a great deal of interest in the use of MSCs to treat neurodegenerative diseases, in particular for those that are fatal and difficult to treat, such as Huntington's disease and amyotrophic lateral sclerosis. Proposed regenerative approaches to neurological diseases using MSCs include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation into the brain, MSCs promote endogenous neuronal growth, decrease apoptosis, reduce levels of free radicals, encourage synaptic connection from damaged neurons and regulate inflammation, primarily through paracrine actions. MSCs transplanted into the brain have been demonstrated to promote functional recovery by producing trophic factors that induce survival and regeneration of host neurons. Therapies will capitalize on the innate trophic support from MSCs or on augmented growth factor support, such as delivering brain-derived neurotrophic factor or glial-derived neurotrophic factor into the brain to support injured neurons, using genetically engineered MSCs as the delivery vehicles. Clinical trials for MSC injection into the CNS to treat traumatic brain injury and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of neurodegenerative disorders are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                14 February 2023
                2023
                : 11
                : 1107209
                Affiliations
                [1] 1 Arthritis Clinical and Research Center , Peking University People’s Hospital , Beijing, China
                [2] 2 Arthritis Institute , Peking University , Beijing, China
                [3] 3 Department of Biomedical Engineering , School of Medicine , Tsinghua-Peking Center for Life Sciences , Tsinghua University , Beijing, China
                Author notes

                Edited by: Yansong Qi, Inner Mongolia People’s Hospital, China

                Reviewed by: Feza Korkusuz, Hacettepe University, Türkiye

                Zhiguo Yuan, Shanghai Jiao Tong University, China

                *Correspondence: Dan Xing, xingdan@ 123456bjmu.edu.cn ; Jianhao Lin, linjianhao@ 123456pkuph.edu.cn
                [ † ]

                These authors have contributed equally to this work

                This article was submitted to Biomaterials, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                1107209
                10.3389/fbioe.2023.1107209
                9971621
                36865032
                2d5093e3-e1fc-43da-b419-899ed5b56bc7
                Copyright © 2023 Yang, Fan, Wang, Li, He, Xing and Lin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 November 2022
                : 03 February 2023
                Funding
                Funded by: Natural Science Foundation of Beijing Municipality , doi 10.13039/501100004826;
                This study was funded by grants from the Natural Science Foundation of Beijing Municipality (7214261) and Peking University People’s Hospital Scientific Research Development Funds (RDX2020-02).
                Categories
                Bioengineering and Biotechnology
                Original Research

                stem cell,meniscal regeneration,bibliometric,citespace,vosviewer

                Comments

                Comment on this article