83
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Designing the next generation of medicines for malaria control and eradication

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the fight against malaria new medicines are an essential weapon. For the parts of the world where the current gold standard artemisinin combination therapies are active, significant improvements can still be made: for example combination medicines which allow for single dose regimens, cheaper, safer and more effective medicines, or improved stability under field conditions. For those parts of the world where the existing combinations show less than optimal activity, the priority is to have activity against emerging resistant strains, and other criteria take a secondary role. For new medicines to be optimal in malaria control they must also be able to reduce transmission and prevent relapse of dormant forms: additional constraints on a combination medicine. In the absence of a highly effective vaccine, new medicines are also needed to protect patient populations. In this paper, an outline definition of the ideal and minimally acceptable characteristics of the types of clinical candidate molecule which are needed (target candidate profiles) is suggested. In addition, the optimal and minimally acceptable characteristics of combination medicines are outlined (target product profiles). MMV presents now a suggested framework for combining the new candidates to produce the new medicines. Sustained investment over the next decade in discovery and development of new molecules is essential to enable the long-term delivery of the medicines needed to combat malaria.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial.

          In the treatment of severe malaria, intravenous artesunate is more rapidly acting than intravenous quinine in terms of parasite clearance, is safer, and is simpler to administer, but whether it can reduce mortality is uncertain. We did an open-label randomised controlled trial in patients admitted to hospital with severe falciparum malaria in Bangladesh, India, Indonesia, and Myanmar. We assigned individuals intravenous artesunate 2.4 mg/kg bodyweight given as a bolus (n=730) at 0, 12, and 24 h, and then daily, or intravenous quinine (20 mg salt per kg loading dose infused over 4 h then 10 mg/kg infused over 2-8 h three times a day; n=731). Oral medication was substituted when possible to complete treatment. Our primary endpoint was death from severe malaria, and analysis was by intention to treat. We assessed all patients randomised for the primary endpoint. Mortality in artesunate recipients was 15% (107 of 730) compared with 22% (164 of 731) in quinine recipients; an absolute reduction of 34.7% (95% CI 18.5-47.6%; p=0.0002). Treatment with artesunate was well tolerated, whereas quinine was associated with hypoglycaemia (relative risk 3.2, 1.3-7.8; p=0.009). Artesunate should become the treatment of choice for severe falciparum malaria in adults.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Comparative genomics of the neglected human malaria parasite Plasmodium vivax.

            The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin.

              Behavioral modification of malaria vectors in response to vector control methods is of great concern. We investigated whether full coverage of long-lasting insecticide-treated mosquito nets (LLINs) may induce a switch in biting behavior in Anopheles funestus, a major malaria vector in Africa. Human-landing collections were conducted indoor and outdoor in 2 villages (Lokohouè and Tokoli) in Benin before and 1 year and 3 years after implementation of universal LLIN coverage. Proportion of outdoor biting (POB) and median catching times (MCT) were compared. The resistance of A. funestus to deltamethrin was monitored using bioassays. MCT of A. funestus switched from 2 AM in Lokohoué and 3 AM in Tokoli to 5 AM after 3 years (Mann-Whitney U test, P < .0001). In Tokoli, POB increased from 45% to 68.1% (odds ratio = 2.55; 95 confidence interval = 1.72-3.78; P < .0001) 1 year after the universal coverage, whereas POB was unchanged in Lokohoué. In Lokohoué, however, the proportion of A. funestus that bites after 6 am was 26%. Bioassays showed no resistance to deltamethrin. This study provides evidence for a switch in malaria vectors' biting behavior after the implementation of LLIN at universal coverage. These findings might have direct consequences for malaria control in Africa and highlighted the need for alternative strategies for better targeting malaria vectors.
                Bookmark

                Author and article information

                Journal
                Malar J
                Malar. J
                Malaria Journal
                BioMed Central
                1475-2875
                2013
                6 June 2013
                : 12
                : 187
                Affiliations
                [1 ]Medicines for Malaria Venture (MMV), PO Box 1826, route de Pré-Bois 20, Geneva 15 1215, Switzerland
                Article
                1475-2875-12-187
                10.1186/1475-2875-12-187
                3685552
                23742293
                2d3e9b00-5d3d-49b2-b2d3-495335a0c3ad
                Copyright ©2013 Burrows et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 March 2013
                : 29 May 2013
                Categories
                Review

                Infectious disease & Microbiology
                malaria,plasmodium,anopheles,drug discovery,medicines,target candidate profile,target product profile,mmv

                Comments

                Comment on this article