6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NF-κB-Gasdermin D (GSDMD) Axis Couples Oxidative Stress and NACHT, LRR and PYD Domains-Containing Protein 3 (NLRP3) Inflammasome-Mediated Cardiomyocyte Pyroptosis Following Myocardial Infarction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Pyroptosis and oxidative stress play pivotal roles in cardiomyocyte loss after myocardial infarction. NF-κB is associated with oxidative stress and gasdermin D (GSDMD), the effector molecule of pyroptosis. However, the exact relationship between oxidative stress and cardiomyocyte pyroptosis remains unknown.

          Material/Methods

          We measured inflammasome-mediated cardiomyocyte pyroptosis in vivo via membrane pore formation, lactate dehydrogenase (LDH) release, and expression of caspase-1, cleaved caspase-1, NACHT, LRR and PYD domains-containing protein 3 (NLRP3), and apoptosis-associated speck-like protein containing a CARD (ASC). Furthermore, we induced pyroptosis in vitro by oxygen-glucose deprivation (OGD) in H9C2 cells. NLRP3 inflammasome-mediated pyroptosis was confirmed by LDH assay kit and Western blot. Oxidative stress was evaluated by reactive oxygen species (ROS) and superoxide dismutase (SOD) activity. We suppressed oxidative stress with N-acetyl-cysteine (NAC) and measured subsequent changes to the NF-κB-GSDMD axis and pyroptosis by LDH assay kit and Western blot. Then, we inhibited NF-κB activation with pyrrolidine dithiocarbamate (PDTC) and measured changes to GSDMD activity and pyroptosis by qRT-PCR, Western blot, and LDH assay kit.

          Results

          Suppression of oxidative stress by NAC reduced NF-κB and GSDMD activation and increased pyroptosis, characterized by LDH release and NLRP3 inflammasome activation in H9C2 cells under OGD. Moreover, inhibition of NF-κB activation reduced GSDMD transcription and activation and NLRP3 inflammasome-mediated pyroptosis of H9C2 cells under OGD.

          Conclusions

          We demonstrated that the NF-κB-GSDMD axis functioned as a bridge between oxidative stress and NLRP3 inflammasome-mediated cardiomyocyte pyroptosis. Our findings provide important insight into the mechanism of myocardial infarction-related ventricular remodeling.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: not found
          • Article: not found

          Pro-inflammatory programmed cell death.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death

            Abstract Pyroptosis is a lytic type of cell death that is initiated by inflammatory caspases. These caspases are activated within multi‐protein inflammasome complexes that assemble in response to pathogens and endogenous danger signals. Pyroptotic cell death has been proposed to proceed via the formation of a plasma membrane pore, but the underlying molecular mechanism has remained unclear. Recently, gasdermin D (GSDMD), a member of the ill‐characterized gasdermin protein family, was identified as a caspase substrate and an essential mediator of pyroptosis. GSDMD is thus a candidate for pyroptotic pore formation. Here, we characterize GSDMD function in live cells and in vitro. We show that the N‐terminal fragment of caspase‐1‐cleaved GSDMD rapidly targets the membrane fraction of macrophages and that it induces the formation of a plasma membrane pore. In vitro, the N‐terminal fragment of caspase‐1‐cleaved recombinant GSDMD tightly binds liposomes and forms large permeability pores. Visualization of liposome‐inserted GSDMD at nanometer resolution by cryo‐electron and atomic force microscopy shows circular pores with variable ring diameters around 20 nm. Overall, these data demonstrate that GSDMD is the direct and final executor of pyroptotic cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse.

              Acute myocardial infarction (AMI) initiates an intense inflammatory response that promotes cardiac dysfunction, cell death, and ventricular remodeling. The molecular events underlying this inflammatory response, however, are incompletely understood. In experimental models of sterile inflammation, ATP released from dying cells triggers, through activation of the purinergic P2X7 receptor, the formation of the inflammasome, a multiprotein complex necessary for caspase-1 activation and amplification of the inflammatory response. Here we describe the presence of the inflammasome in the heart in an experimental mouse model of AMI as evidenced by increased caspase-1 activity and cytoplasmic aggregates of the three components of the inflammasome--apoptosis speck-like protein containing a caspase-recruitment domain (ASC), cryopyrin, and caspase-1, localized to the granulation tissue and cardiomyocytes bordering the infarct. Cultured adult murine cardiomyocytes also showed the inducible formation of the inflammasome associated with increased cell death. P2X7 and cryopyrin inhibition (using silencing RNA or a pharmacologic inhibitor) prevented the formation of the inflammasome and limited infarct size and cardiac enlargement after AMI. The formation of the inflammasome in the mouse heart during AMI causes additional loss of functional myocardium, leading to heart failure. Modulation of the inflammasome may therefore represent a unique therapeutic strategy to limit cell death and prevent heart failure after AMI.
                Bookmark

                Author and article information

                Journal
                Med Sci Monit
                Med. Sci. Monit
                Medical Science Monitor
                Medical Science Monitor : International Medical Journal of Experimental and Clinical Research
                International Scientific Literature, Inc.
                1234-1010
                1643-3750
                2018
                30 August 2018
                : 24
                : 6044-6052
                Affiliations
                Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong, P.R. China
                Author notes
                Corresponding Authors: Qian Lei, e-mail: leiqianwyyx@ 123456163.com ; Can Chen, e-mail: chencan-21@ 123456163.com
                [A]

                Study Design

                [B]

                Data Collection

                [C]

                Statistical Analysis

                [D]

                Data Interpretation

                [E]

                Manuscript Preparation

                [F]

                Literature Search

                [G]

                Funds Collection

                [*]

                These authors contributed equally to this work

                Article
                908529
                10.12659/MSM.908529
                6128186
                30161099
                2d1c8532-9f0a-4fd2-95fd-e16dd06d39bc
                © Med Sci Monit, 2018

                This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International ( CC BY-NC-ND 4.0)

                History
                : 14 December 2017
                : 21 March 2018
                Categories
                Animal Study

                inflammasomes,nf-kappa b,oxidative stress
                inflammasomes, nf-kappa b, oxidative stress

                Comments

                Comment on this article