110
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mapping and Modelling the Geographical Distribution and Environmental Limits of Podoconiosis in Ethiopia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ethiopia is assumed to have the highest burden of podoconiosis globally, but the geographical distribution and environmental limits and correlates are yet to be fully investigated. In this paper we use data from a nationwide survey to address these issues.

          Methodology

          Our analyses are based on data arising from the integrated mapping of podoconiosis and lymphatic filariasis (LF) conducted in 2013, supplemented by data from an earlier mapping of LF in western Ethiopia in 2008–2010. The integrated mapping used woreda (district) health offices’ reports of podoconiosis and LF to guide selection of survey sites. A suite of environmental and climatic data and boosted regression tree (BRT) modelling was used to investigate environmental limits and predict the probability of podoconiosis occurrence.

          Principal Findings

          Data were available for 141,238 individuals from 1,442 communities in 775 districts from all nine regional states and two city administrations of Ethiopia. In 41.9% of surveyed districts no cases of podoconiosis were identified, with all districts in Affar, Dire Dawa, Somali and Gambella regional states lacking the disease. The disease was most common, with lymphoedema positivity rate exceeding 5%, in the central highlands of Ethiopia, in Amhara, Oromia and Southern Nations, Nationalities and Peoples regional states. BRT modelling indicated that the probability of podoconiosis occurrence increased with increasing altitude, precipitation and silt fraction of soil and decreased with population density and clay content. Based on the BRT model, we estimate that in 2010, 34.9 (95% confidence interval [CI]: 20.2–51.7) million people (i.e. 43.8%; 95% CI: 25.3–64.8% of Ethiopia’s national population) lived in areas environmentally suitable for the occurrence of podoconiosis.

          Conclusions

          Podoconiosis is more widespread in Ethiopia than previously estimated, but occurs in distinct geographical regions that are tied to identifiable environmental factors. The resultant maps can be used to guide programme planning and implementation and estimate disease burden in Ethiopia. This work provides a framework with which the geographical limits of podoconiosis could be delineated at a continental scale.

          Author Summary

          Podoconiosis is a neglected tropical disease that results in swelling of the lower legs and feet. It is common among barefoot individuals with prolonged contact with irritant soils of volcanic origin. The disease causes significant social and economic burden. The disease can be prevented by consistent shoe wearing and regular foot hygiene. A pre-requisite for implementation of prevention and morbidity management is information on where the disease is endemic and the identification of priority areas. We undertook nationwide mapping of podoconiosis in Ethiopia covering 1442 communities in 775 districts all over Ethiopia. During the survey, individuals underwent a rapid-format antigen test for diagnosis of lymphatic filariasis and clinical history and physical examination for podoconiosis. A suite of environmental and climatic data and a method called boosted regression tree modelling was used to predict the occurrence of podoconiosis. Our survey results indicated that podoconiosis is more widespread in Ethiopia than previously estimated. The modelling indicated that the probability of podoconiosis occurrence increased with increasing altitude, precipitation and silt fraction of soil and decreased with more clay content and population density. The map showed that in 2010, 34.9 million people lived in areas environmentally suitable for the occurrence of podoconiosis in Ethiopia.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Population Distribution, Settlement Patterns and Accessibility across Africa in 2010

          The spatial distribution of populations and settlements across a country and their interconnectivity and accessibility from urban areas are important for delivering healthcare, distributing resources and economic development. However, existing spatially explicit population data across Africa are generally based on outdated, low resolution input demographic data, and provide insufficient detail to quantify rural settlement patterns and, thus, accurately measure population concentration and accessibility. Here we outline approaches to developing a new high resolution population distribution dataset for Africa and analyse rural accessibility to population centers. Contemporary population count data were combined with detailed satellite-derived settlement extents to map population distributions across Africa at a finer spatial resolution than ever before. Substantial heterogeneity in settlement patterns, population concentration and spatial accessibility to major population centres is exhibited across the continent. In Africa, 90% of the population is concentrated in less than 21% of the land surface and the average per-person travel time to settlements of more than 50,000 inhabitants is around 3.5 hours, with Central and East Africa displaying the longest average travel times. The analyses highlight large inequities in access, the isolation of many rural populations and the challenges that exist between countries and regions in providing access to services. The datasets presented are freely available as part of the AfriPop project, providing an evidence base for guiding strategic decisions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Determining global population distribution: methods, applications and data.

            Evaluating the total numbers of people at risk from infectious disease in the world requires not just tabular population data, but data that are spatially explicit and global in extent at a moderate resolution. This review describes the basic methods for constructing estimates of global population distribution with attention to recent advances in improving both spatial and temporal resolution. To evaluate the optimal resolution for the study of disease, the native resolution of the data inputs as well as that of the resulting outputs are discussed. Assumptions used to produce different population data sets are also described, with their implications for the study of infectious disease. Lastly, the application of these population data sets in studies to assess disease distribution and health impacts is reviewed. The data described in this review are distributed in the accompanying DVD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The burden of neglected tropical diseases in Ethiopia, and opportunities for integrated control and elimination

              Background Neglected tropical diseases (NTDs) are a group of chronic parasitic diseases and related conditions that are the most common diseases among the 2·7 billion people globally living on less than US$2 per day. In response to the growing challenge of NTDs, Ethiopia is preparing to launch a NTD Master Plan. The purpose of this review is to underscore the burden of NTDs in Ethiopia, highlight the state of current interventions, and suggest ways forward. Results This review indicates that NTDs are significant public health problems in Ethiopia. From the analysis reported here, Ethiopia stands out for having the largest number of NTD cases following Nigeria and the Democratic Republic of Congo. Ethiopia is estimated to have the highest burden of trachoma, podoconiosis and cutaneous leishmaniasis in sub-Saharan Africa (SSA), the second highest burden in terms of ascariasis, leprosy and visceral leishmaniasis, and the third highest burden of hookworm. Infections such as schistosomiasis, trichuriasis, lymphatic filariasis and rabies are also common. A third of Ethiopians are infected with ascariasis, one quarter is infected with trichuriasis and one in eight Ethiopians lives with hookworm or is infected with trachoma. However, despite these high burdens of infection, the control of most NTDs in Ethiopia is in its infancy. In terms of NTD control achievements, Ethiopia reached the leprosy elimination target of 1 case/10,000 population in 1999. No cases of human African trypanosomiasis have been reported since 1984. Guinea worm eradication is in its final phase. The Onchocerciasis Control Program has been making steady progress since 2001. A national blindness survey was conducted in 2006 and the trachoma program has kicked off in some regions. Lymphatic Filariasis, podoconiosis and rabies mapping are underway. Conclusion Ethiopia bears a significant burden of NTDs compared to other SSA countries. To achieve success in integrated control of NTDs, integrated mapping, rapid scale up of interventions and operational research into co implementation of intervention packages will be crucial.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                29 July 2015
                July 2015
                : 9
                : 7
                : e0003946
                Affiliations
                [1 ]Brighton and Sussex Medical School, Falmer, Brighton, United Kingdom
                [2 ]School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
                [3 ]Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
                [4 ]Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
                [5 ]Ethiopian Public Health Institute, Addis Ababa, Ethiopia
                [6 ]School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
                [7 ]Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
                [8 ]Federal Ministry of Health, Addis Ababa, Ethiopia
                [9 ]Armauer Hansen Research Institute/ALERT, Addis Ababa, Ethiopia
                [10 ]Institute of Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
                [11 ]Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
                [12 ]RTI International, Washington, District of Columbia, United States of America
                School of Population Health, University of Queensland, AUSTRALIA
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: KD MJN GD SJB. Performed the experiments: KD HS AG AAss AH OS GD. Analyzed the data: KD JC NG. Contributed reagents/materials/analysis tools: KD JC NG RLP MPR MJB SIH GD SJB AAss AAse. Wrote the paper: KD JC MJN NG RLP HS AG AAss AK AH MPR OS MJB AAse SIH RR FE GD SJB.

                Article
                PNTD-D-14-02038
                10.1371/journal.pntd.0003946
                4519246
                26222887
                2d0bac36-7cd9-419c-bcb5-f30439b81f3d

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 20 November 2014
                : 2 July 2015
                Page count
                Figures: 5, Tables: 3, Pages: 18
                Funding
                This study was financially supported by The Wellcome Trust [grant number 099876]. KD is supported by a Wellcome Trust Fellowship in Public Health and Tropical Medicine [grant number 099876]. GD is supported by a Wellcome Trust University award [grant number 091956] to do work in podoconiosis. SJB is supported by a Wellcome Trust Senior Fellowship in Basic Biomedical Science [grant number 098045], which also supports RLP and the Global Atlas of Helminth Infections ( www.thiswormyworld.org). SIH is funded by a Senior Research Fellowship from the Wellcome Trust (#095066), which also supports NG and a grant from the Bill & Melinda Gates Foundation (#OPP1093011). SIH would also like to acknowledge funding support from the RAPIDD program of the Science & Technology Directorate, Department of Homeland Security, and the Fogarty International Center, National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article