27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inflammatory Links Between High Fat Diets and Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent years, chronic overnutrition, such as consumption of a high-fat diet (HFD), has been increasingly viewed as a significant modifiable risk factor for diseases such as diabetes and certain types of cancer. However, the mechanisms by which HFDs exert adverse effects on human health remains poorly understood. Here, this paper will review the recent scientific literature about HFD-induced inflammation and subsequent development of diseases and cancer, with an emphasis on mechanisms involved. Given the expanding global epidemic of excessive HFD intake, understanding the impacts of a HFD on these medical conditions, gaining great insights into possible underlying mechanisms, and developing effective therapeutic strategies are of great importance.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          A core gut microbiome in obese and lean twins

          The human distal gut harbors a vast ensemble of microbes (the microbiota) that provide us with important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides1–6. Studies of a small number of unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes6–8, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is utilized and stored3–5. To address the question of how host genotype, environmental exposures, and host adiposity influence the gut microbiome, we have characterized the fecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person’s gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable ‘core microbiome’ at the gene, rather than at the organismal lineage level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity, and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiologic states (obese versus lean).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Richness of human gut microbiome correlates with metabolic markers.

            We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus gut bacterial richness. They contain known and previously unknown bacterial species at different proportions; individuals with a low bacterial richness (23% of the population) are characterized by more marked overall adiposity, insulin resistance and dyslipidaemia and a more pronounced inflammatory phenotype when compared with high bacterial richness individuals. The obese individuals among the lower bacterial richness group also gain more weight over time. Only a few bacterial species are sufficient to distinguish between individuals with high and low bacterial richness, and even between lean and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fate decision of mesenchymal stem cells: adipocytes or osteoblasts?

              Mesenchymal stem cells (MSCs), a non-hematopoietic stem cell population first discovered in bone marrow, are multipotent cells capable of differentiating into mature cells of several mesenchymal tissues, such as fat and bone. As common progenitor cells of adipocytes and osteoblasts, MSCs are delicately balanced for their differentiation commitment. Numerous in vitro investigations have demonstrated that fat-induction factors inhibit osteogenesis, and, conversely, bone-induction factors hinder adipogenesis. In fact, a variety of external cues contribute to the delicate balance of adipo-osteogenic differentiation of MSCs, including chemical, physical, and biological factors. These factors trigger different signaling pathways and activate various transcription factors that guide MSCs to commit to either lineage. The dysregulation of the adipo-osteogenic balance has been linked to several pathophysiologic processes, such as aging, obesity, osteopenia, osteopetrosis, and osteoporosis. Thus, the regulation of MSC differentiation has increasingly attracted great attention in recent years. Here, we review external factors and their signaling processes dictating the reciprocal regulation between adipocytes and osteoblasts during MSC differentiation and the ultimate control of the adipo-osteogenic balance.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                13 November 2018
                2018
                : 9
                : 2649
                Affiliations
                [1] 1Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production , Changsha, China
                [2] 2Science College of Jiangxi Agricultural University , Nanchang, China
                [3] 3Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University , Guangzhou, China
                Author notes

                Edited by: Philippe Saas, INSERM U1098 Interactions Hôte-Greffon-Tumeur and Ingénierie Cellulaire et Génique, France

                Reviewed by: Luca Antonioli, Università degli Studi di Pisa, Italy; Matteo Fornai, Università degli Studi di Pisa, Italy; Kawaljit Kaur, University of California, Los Angeles, United States

                *Correspondence: Kang Xu xukang@ 123456isa.ac.cn

                This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                †These authors have contributed equally to this work

                Article
                10.3389/fimmu.2018.02649
                6243058
                30483273
                2ccb1712-05cc-4e48-bdf9-9c5f919e0cfe
                Copyright © 2018 Duan, Zeng, Zheng, Song, Li, Kong and Xu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 September 2018
                : 26 October 2018
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 123, Pages: 10, Words: 8809
                Categories
                Immunology
                Review

                Immunology
                high-fat diets,inflammation,disease,mechanisms,drug therapy
                Immunology
                high-fat diets, inflammation, disease, mechanisms, drug therapy

                Comments

                Comment on this article