5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A gapA PCR-sequencing Assay for Identifying the Dickeya and Pectobacterium Potato Pathogens

      1 , 2 , 2 , 2 , 3
      Plant Disease
      Scientific Societies

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several pectinolytic Pectobacterium and Dickeya species and subspecies are causative agents of blackleg and soft rot diseases on potato plants and tubers. Rapid and accurate identification of these taxa is a crucial issue for the production and international trade of potato seed-tubers. Here, we developed a PCR-sequencing tool to easily characterize the different Pectobacterium and Dickeya taxa. The gapA gene sequences from 53 published genomes were aligned and a phylogeny tree was constructed. A set of 35 signature nucleotides was discovered to distinguish the Pectobacterium and Dickeya genera, species, and subspecies. Then, a PCR-primer couple was designed for amplifying the gapA gene in pectinolytic enterobacteria. The primers were tested on 22 isolates recovered from blackleg symptoms in several potato fields. Amplicons were sequenced and signature-nucleotides were analyzed. A phylogeny that includes gapA sequence specimens confirmed the taxonomical identification of these environmental isolates.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Host range and molecular phylogenies of the soft rot enterobacterial genera pectobacterium and dickeya.

          ABSTRACT Pectobacterium and Dickeya spp. are related broad-host-range entero-bacterial pathogens of angiosperms. A review of the literature shows that these genera each cause disease in species from at least 35% of angiosperm plant orders. The known host ranges of these pathogens partially overlap and, together, these two genera are pathogens of species from 50% of angiosperm plant orders. Notably, there are no reported hosts for either genus in the eudicots clade and no reported Dickeya hosts in the magnoliids or eurosids II clades, although Pectobacterium spp. are pathogens of at least one plant species in the magnoliids and at least one in each of the three eurosids II plant orders. In addition, Dickeya but not Pectobacterium spp. have been reported on a host in the rosids clade and, unlike Pectobacterium spp., have been reported on many Poales species. Natural disease among nonangiosperms has not been reported for either genus. Phylogenetic analyses of sequences concatenated from regions of seven housekeeping genes (acnA, gapA, icdA, mdh, mtlD, pgi, and proA) from representatives of these genera demonstrated that Dickeya spp. and the related tree pathogens, the genus Brenneria, are more diverse than Pectobacterium spp. and that the Pectobacterium strains can be divided into at least five distinct clades, three of which contain strains from multiple host plants.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Dickeya species: an emerging problem for potato production in Europe

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov.

              A collection of 75 strains of Pectobacterium chrysanthemi (including all biovars and pathovars) and the type strains of Brenneria paradisiaca (CFBP 4178(T)) and Pectobacterium cypripedii (CFBP 3613(T)) were studied by DNA-DNA hybridization, numerical taxonomy of 121 phenotypic characteristics, serology and 16S rRNA gene-based phylogenetic analyses. From analysis of 16S rRNA gene sequences, it was deduced that P. chrysanthemi strains and B. paradisiaca CFBP 4178(T) formed a clade distinct from the genera Pectobacterium and Brenneria; therefore, it is proposed to transfer all the strains to a novel genus, Dickeya gen. nov. By DNA-DNA hybridization, the strains of P. chrysanthemi were distributed among six genomic species: genomospecies 1 harbouring 16 strains of biovar 3 and four strains of biovar 8, genomospecies 2 harbouring 16 strains of biovar 3, genomospecies 3 harbouring two strains of biovar 6 and five strains of biovar 5, genomospecies 4 harbouring five strains of biovar 2, genomospecies 5 harbouring six strains of biovar 1, four strains of biovar 7 and five strains of biovar 9 and genomospecies 6 harbouring five strains of biovar 4 and B. paradisiaca CFBP 4178(T). Two strains of biovar 3 remained unclustered. Biochemical criteria, deduced from a numerical taxonomic study of phenotypic characteristics, and serological reactions allowed discrimination of the strains belonging to the six genomic species. Thus, it is proposed that the strains clustered in these six genomic species be assigned to the species Dickeya zeae sp. nov. (type strain CFBP 2052(T)=NCPPB 2538(T)), Dickeya dadantii sp. nov. (type strain CFBP 1269(T)=NCPPB 898(T)), Dickeya chrysanthemi comb. nov. (subdivided into two biovars, bv. chrysanthemi and bv. parthenii), Dickeya dieffenbachiae sp. nov. (type strain CFBP 2051(T)=NCPPB 2976(T)), Dickeya dianthicola sp. nov. (type strain CFBP 1200(T)=NCPPB 453(T)) and Dickeya paradisiaca comb. nov., respectively.
                Bookmark

                Author and article information

                Journal
                Plant Disease
                Plant Disease
                Scientific Societies
                0191-2917
                1943-7692
                July 2017
                July 2017
                : 101
                : 7
                : 1278-1282
                Affiliations
                [1 ]Seed Innovation Protection Research Environment, Comité Nord-SIPRE, 62217 Achicourt, France; and Institute for Integrative Biology of the Cell, CNRS CEA Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
                [2 ]Seed Innovation Protection Research Environment, Comité Nord-SIPRE, 62217 Achicourt, France
                [3 ]Institute for Integrative Biology of the Cell, CNRS CEA Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
                Article
                10.1094/PDIS-12-16-1810-RE
                30682965
                2cc08438-3f80-42e2-a4b0-2d6fed01e58f
                © 2017
                History

                Comments

                Comment on this article