46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          There is a need to standardise non-invasive measurements of liver iron concentrations (LIC) so clear inferences can be drawn about body iron levels that are associated with hepatic and extra-hepatic complications of iron overload. Since the first demonstration of an inverse relationship between biopsy LIC and liver magnetic resonance (MR) using a proof-of-concept T2* sequence, MR technology has advanced dramatically with a shorter minimum echo-time, closer inter-echo spacing and constant repetition time. These important advances allow more accurate calculation of liver T2* especially in patients with high LIC.

          Methods

          Here, we used an optimised liver T2* sequence calibrated against 50 liver biopsy samples on 25 patients with transfusional haemosiderosis using ordinary least squares linear regression, and assessed the method reproducibility in 96 scans over an LIC range up to 42 mg/g dry weight (dw) using Bland-Altman plots. Using mixed model linear regression we compared the new T2*-LIC with R2-LIC (Ferriscan) on 92 scans in 54 patients with transfusional haemosiderosis and examined method agreement using Bland-Altman approach.

          Results

          Strong linear correlation between ln(T2*) and ln(LIC) led to the calibration equation LIC = 31.94(T2*) -1.014. This yielded LIC values approximately 2.2 times higher than the proof-of-concept T2* method. Comparing this new T2*-LIC with the R2-LIC (Ferriscan) technique in 92 scans, we observed a close relationship between the two methods for values up to 10 mg/g dw, however the method agreement was poor.

          Conclusions

          New calibration of T2* against liver biopsy estimates LIC in a reproducible way, correcting the proof-of-concept calibration by 2.2 times. Due to poor agreement, both methods should be used separately to diagnose or rule out liver iron overload in patients with increased ferritin.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Liver iron concentrations and urinary hepcidin in beta-thalassemia.

          Patients with beta-thalassemia, like those with genetic hemochromatosis, develop iron overload due to increased iron absorption, and their iron burden is further exacerbated by transfusion therapy. Hepcidin, a hepatic hormone, regulates systemic iron homeostasis by inhibiting the absorption of iron from the diet and the recycling of iron by macrophages. In turn, hepcidin release is increased by iron loading and inhibited by erythropoietic activity. Hepcidin deficiency is the cause of iron overload in most forms of hereditary hemochromatosis. We sought to determine hepcidin's role in the pathogenesis of iron overload in b-thalassemia. We assessed the degree of iron overload in thalassemia intermedia and major patients by measuring hepatic iron concentration in liver biopsy samples and serum ferritin, estimated erythropoietic drive by assaying soluble transferrin receptor and serum erythropoietin levels and correlated these with urinary hepcidin measurements. Urinary hepcidin levels in beta-thalassemia demonstrate severe hepcidin deficiency in thalassemia intermedia. There was a strong inverse relationship between urinary hepcidin levels and both erythropoietin and soluble transferrin receptor, markers of erythropoietic activity. In contrast, hepcidin levels were elevated in thalassemia major, presumably due to transfusions that reduce erythropoietic drive and deliver a large iron load. Despite similar liver iron concentrations in the two conditions, serum ferritin was much lower in thalassemia intermedia. In thalassemia intermedia, high erythropoietic drive causes severe hepcidin deficiency. The lack of hepcidin results in hyperabsorption of dietary iron, but also in iron depletion of macrophages, lowering their secretion of ferritin and, consequently, serum ferritin levels. In contrast, in thalassemia major, transfusions decrease erythropoietic drive and increase the iron load, resulting in relatively higher hepcidin levels. In the presence of higher hepcidin levels, dietary iron absorption is moderated and macrophages retain iron, contributing to higher serum ferritin. In the future, hepcidin measurements may allow a more accurate assessment of the degree of iron overload and the maldistribution of iron in thalassemia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multicenter Validation of Spin-Density Projection-Assisted R2-MRI for the Noninvasive Measurement of Liver Iron Concentration

            Purpose Magnetic resonance imaging (MRI)-based techniques for assessing liver iron concentration (LIC) have been limited by single scanner calibration against biopsy. Here, the calibration of spin-density projection-assisted (SDPA) R2-MRI (FerriScan®) in iron-overloaded β-thalassemia patients treated with the iron chelator, deferasirox, for 12 months is validated. Methods SDPA R2-MRI measurements and percutaneous needle liver biopsy samples were obtained from a subgroup of patients (n = 233) from the ESCALATOR trial. Five different makes and models of scanner were used in the study. Results LIC, derived from mean of MRI- and biopsy-derived values, ranged from 0.7 to 50.1 mg Fe/g dry weight. Mean fractional differences between SDPA R2-MRI- and biopsy-measured LIC were not significantly different from zero. They were also not significantly different from zero when categorized for each of the Ishak stages of fibrosis and grades of necroinflammation, for subjects aged 3 to <8 versus ≥8 years, or for each scanner model. Upper and lower 95% limits of agreement between SDPA R2-MRI and biopsy LIC measurements were 74 and −71%. Conclusion The calibration curve appears independent of scanner type, patient age, stage of liver fibrosis, grade of necroinflammation, and use of deferasirox chelation therapy, confirming the clinical usefulness of SDPA R2-MRI for monitoring iron overload. Magn Reson Med 71:2215–2223, 2014. © 2013 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multi-center validation of the transferability of the magnetic resonance T2* technique for the quantification of tissue iron.

              The transferability of the T2* technique for measurement of tissue iron between magnetic resonance (MR) scanners is unknown. Heart and liver multi-breath-hold T2* sequences were installed on MR scanners at six different sites. T2* was assessed locally in five or more patients with thalassemia major (n=39), and subjects were re-scanned at the standardization center in London. Inter-center reproducibility of T2* in heart and liver was 5.0% and 7.1%, with mean absolute differences in T2* of 1.3 ms and 0.45 ms, respectively. The MR multi-breath-hold T2* technique for tissue iron quantification is transferable between scanners with good reproducibility.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Cardiovasc Magn Reson
                J Cardiovasc Magn Reson
                Journal of Cardiovascular Magnetic Resonance
                BioMed Central
                1097-6647
                1532-429X
                2014
                10 June 2014
                : 16
                : 1
                : 40
                Affiliations
                [1 ]Haematology Department, University College London Hospitals, London, UK
                [2 ]University College London, London, UK
                [3 ]NIHR Cardiovascular BRU, Royal Brompton Hospital, London, UK
                [4 ]Imperial College London, London, UK
                [5 ]Royal College of Physicians, London, UK
                [6 ]Cardiovascular Sciences Research Centre, St George’s University of London, London, UK
                Article
                1532-429X-16-40
                10.1186/1532-429X-16-40
                4064805
                24915987
                2c84a983-9708-4061-8ee3-0da61832c1eb
                Copyright © 2014 Garbowski et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 3 January 2014
                : 22 May 2014
                Categories
                Research

                Cardiovascular Medicine
                thalassemia,clinical iron overload,liver iron,magnetic resonance,liver biopsy,calibration

                Comments

                Comment on this article