0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Continuous Glucose Monitoring Metrics and Birth Weight: Informing Management of Type 1 Diabetes Throughout Pregnancy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          To determine gestational weekly changes in continuous glucose monitoring (CGM) metrics and 24-h glucose profiles and their relationship to infant birth weight in pregnant women with type 1 diabetes.

          RESEARCH DESIGN AND METHODS

          An analysis of >10.5 million CGM glucose measures from 386 pregnant women with type 1 diabetes from two international multicenter studies was performed. CGM glucose metrics and 24-h glucose profiles were calculated for each gestational week, and the relationship to normal (10–90th percentile) and large (>90th percentile) for gestational age (LGA) birth weight infants was determined.

          RESULTS

          Mean CGM glucose concentration fell and percentage of time spent in the pregnancy target range of 3.5–7.8 mmol/L (63–140 mg/dL) increased in the first 10 weeks of pregnancy and plateaued until 28 weeks of gestation, before further improvement in mean glucose and percentage of time in range until delivery. Maternal CGM glucose metrics diverged at 10 weeks of gestation, with significantly lower mean CGM glucose concentration (7.1 mmol/L; 95% CI 7.05–7.15 [127.8 mg/dL; 95% CI 126.9–128.7] vs. 7.5 mmol/L; 95% CI 7.45–7.55 [135 mg/dL; 95% CI 134.1–135.9]) and higher percentage of time in range (55%; 95% CI 54–56 vs. 50%; 95% CI 49–51) in women who had normal versus LGA. The 24-h glucose profiles were significantly higher across the day from 10 weeks of gestation in LGA.

          CONCLUSIONS

          Normal birth weight is associated with achieving significantly lower mean CGM glucose concentration across the 24-h day and higher CGM time in range from before the end of the first trimester, emphasizing the need for a shift in clinical management, with increased focus on using weekly CGM glucose targets for optimizing maternal glycemia from early pregnancy.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range

          Improvements in sensor accuracy, greater convenience and ease of use, and expanding reimbursement have led to growing adoption of continuous glucose monitoring (CGM). However, successful utilization of CGM technology in routine clinical practice remains relatively low. This may be due in part to the lack of clear and agreed-upon glycemic targets that both diabetes teams and people with diabetes can work toward. Although unified recommendations for use of key CGM metrics have been established in three separate peer-reviewed articles, formal adoption by diabetes professional organizations and guidance in the practical application of these metrics in clinical practice have been lacking. In February 2019, the Advanced Technologies & Treatments for Diabetes (ATTD) Congress convened an international panel of physicians, researchers, and individuals with diabetes who are expert in CGM technologies to address this issue. This article summarizes the ATTD consensus recommendations for relevant aspects of CGM data utilization and reporting among the various diabetes populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hyperglycemia and adverse pregnancy outcomes.

            It is controversial whether maternal hyperglycemia less severe than that in diabetes mellitus is associated with increased risks of adverse pregnancy outcomes. A total of 25,505 pregnant women at 15 centers in nine countries underwent 75-g oral glucose-tolerance testing at 24 to 32 weeks of gestation. Data remained blinded if the fasting plasma glucose level was 105 mg per deciliter (5.8 mmol per liter) or less and the 2-hour plasma glucose level was 200 mg per deciliter (11.1 mmol per liter) or less. Primary outcomes were birth weight above the 90th percentile for gestational age, primary cesarean delivery, clinically diagnosed neonatal hypoglycemia, and cord-blood serum C-peptide level above the 90th percentile. Secondary outcomes were delivery before 37 weeks of gestation, shoulder dystocia or birth injury, need for intensive neonatal care, hyperbilirubinemia, and preeclampsia. For the 23,316 participants with blinded data, we calculated adjusted odds ratios for adverse pregnancy outcomes associated with an increase in the fasting plasma glucose level of 1 SD (6.9 mg per deciliter [0.4 mmol per liter]), an increase in the 1-hour plasma glucose level of 1 SD (30.9 mg per deciliter [1.7 mmol per liter]), and an increase in the 2-hour plasma glucose level of 1 SD (23.5 mg per deciliter [1.3 mmol per liter]). For birth weight above the 90th percentile, the odds ratios were 1.38 (95% confidence interval [CI], 1.32 to 1.44), 1.46 (1.39 to 1.53), and 1.38 (1.32 to 1.44), respectively; for cord-blood serum C-peptide level above the 90th percentile, 1.55 (95% CI, 1.47 to 1.64), 1.46 (1.38 to 1.54), and 1.37 (1.30 to 1.44); for primary cesarean delivery, 1.11 (95% CI, 1.06 to 1.15), 1.10 (1.06 to 1.15), and 1.08 (1.03 to 1.12); and for neonatal hypoglycemia, 1.08 (95% CI, 0.98 to 1.19), 1.13 (1.03 to 1.26), and 1.10 (1.00 to 1.12). There were no obvious thresholds at which risks increased. Significant associations were also observed for secondary outcomes, although these tended to be weaker. Our results indicate strong, continuous associations of maternal glucose levels below those diagnostic of diabetes with increased birth weight and increased cord-blood serum C-peptide levels. Copyright 2008 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              International Consensus on Use of Continuous Glucose Monitoring

              Measurement of glycated hemoglobin (HbA1c) has been the traditional method for assessing glycemic control. However, it does not reflect intra- and interday glycemic excursions that may lead to acute events (such as hypoglycemia) or postprandial hyperglycemia, which have been linked to both microvascular and macrovascular complications. Continuous glucose monitoring (CGM), either from real-time use (rtCGM) or intermittently viewed (iCGM), addresses many of the limitations inherent in HbA1c testing and self-monitoring of blood glucose. Although both provide the means to move beyond the HbA1c measurement as the sole marker of glycemic control, standardized metrics for analyzing CGM data are lacking. Moreover, clear criteria for matching people with diabetes to the most appropriate glucose monitoring methodologies, as well as standardized advice about how best to use the new information they provide, have yet to be established. In February 2017, the Advanced Technologies & Treatments for Diabetes (ATTD) Congress convened an international panel of physicians, researchers, and individuals with diabetes who are expert in CGM technologies to address these issues. This article summarizes the ATTD consensus recommendations and represents the current understanding of how CGM results can affect outcomes.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Diabetes Care
                American Diabetes Association
                0149-5992
                August 01 2022
                July 26 2022
                August 01 2022
                July 26 2022
                : 45
                : 8
                : 1724-1734
                Article
                10.2337/dc22-0078
                35696191
                2c836470-2859-44ca-ab25-866c9d5bc444
                © 2022

                https://www.diabetesjournals.org/content/license

                History

                Comments

                Comment on this article