9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Field experiments have enhanced our understanding of drought impacts on terrestrial ecosystems—But where do we go from here?

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          • We review results from field experiments that simulate drought, an ecologically impactful global change threat that is predicted to increase in magnitude, extent, duration and frequency. Our goal is to address, from primarily an ecosystem perspective, the questions ‘What have we learned from drought experiments?’ and ‘Where do we go from here?’.

          • Drought experiments are among the most numerous climate change manipulations and have been deployed across a wide range of biomes, although most are conducted in short‐statured, water‐limited ecosystems. Collectively, these experiments have enabled ecologists to quantify the negative responses to drought that occur for most aspects of ecosystem structure and function. Multiple meta‐analyses of responses have also enabled comparisons of relative effect sizes of drought across hundreds of sites, particularly for carbon cycle metrics. Overall, drought experiments have provided strong evidence that ecosystem sensitivity to drought increases with aridity, but that plant traits associated with aridity are not necessarily predictive of drought resistance. There is also intriguing evidence that as drought magnitude or duration increases to extreme levels, plant strategies may shift from drought tolerance to drought escape/avoidance.

          • We highlight three areas where more drought experiments are needed to advance our understanding. First, because drought is intensifying in multiple ways, experiments are needed that address alterations in drought magnitude versus duration, timing and/or frequency (individually and interactively). Second, drivers of drought may be shifting—from precipitation deficits to rising atmospheric demand for water—and disentangling how ecosystems respond to changes in hydrological ‘supply versus demand’ is critical for understanding drought impacts in the future. Finally, more attention should be focussed on post‐drought recovery periods since legacies of drought can affect ecosystem functioning much longer than the drought itself.

          • We conclude with a call for a fundamental shift in the focus of drought experiments from those designed primarily as ‘response experiments’, quantifying the magnitude of change in ecosystem structure and function, to more ‘mechanistic experiments’—those that explicitly manipulate ecological processes or attributes thought to underpin drought responses.

          Read the free Plain Language Summary for this article on the Journal blog.

          Related collections

          Most cited references317

          • Record: found
          • Abstract: not found
          • Article: not found

          A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regional vegetation die-off in response to global-change-type drought.

            Future drought is projected to occur under warmer temperature conditions as climate change progresses, referred to here as global-change-type drought, yet quantitative assessments of the triggers and potential extent of drought-induced vegetation die-off remain pivotal uncertainties in assessing climate-change impacts. Of particular concern is regional-scale mortality of overstory trees, which rapidly alters ecosystem type, associated ecosystem properties, and land surface conditions for decades. Here, we quantify regional-scale vegetation die-off across southwestern North American woodlands in 2002-2003 in response to drought and associated bark beetle infestations. At an intensively studied site within the region, we quantified that after 15 months of depleted soil water content, >90% of the dominant, overstory tree species (Pinus edulis, a piñon) died. The die-off was reflected in changes in a remotely sensed index of vegetation greenness (Normalized Difference Vegetation Index), not only at the intensively studied site but also across the region, extending over 12,000 km2 or more; aerial and field surveys confirmed the general extent of the die-off. Notably, the recent drought was warmer than the previous subcontinental drought of the 1950s. The limited, available observations suggest that die-off from the recent drought was more extensive than that from the previous drought, extending into wetter sites within the tree species' distribution. Our results quantify a trigger leading to rapid, drought-induced die-off of overstory woody plants at subcontinental scale and highlight the potential for such die-off to be more severe and extensive for future global-change-type drought under warmer conditions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Functional Ecology
                Functional Ecology
                Wiley
                0269-8463
                1365-2435
                January 2024
                October 31 2023
                January 2024
                : 38
                : 1
                : 76-97
                Affiliations
                [1 ] Department of Biology and Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
                [2 ] Department of Agricultural Biology and Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
                [3 ] Department of Biological Sciences California State University Chico California USA
                [4 ] Department of Biology West Virginia University Morgantown West Virginia USA
                [5 ] Department of Forest and Rangeland Stewardship Colorado State University Fort Collins Colorado USA
                Article
                10.1111/1365-2435.14460
                2c73f3e8-ea3a-460b-8448-9753776d86c1
                © 2024

                http://creativecommons.org/licenses/by-nc/4.0/

                http://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article