37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genomic comparisons among Escherichia coli strains B, K-12, and O157:H7 using IS elements as molecular markers

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Insertion Sequence (IS) elements are mobile genetic elements widely distributed among bacteria. Their activities cause mutations, promoting genetic diversity and sometimes adaptation. Previous studies have examined their copy number and distribution in Escherichia coli K-12 and natural isolates. Here, we map most of the IS elements in E. coli B and compare their locations with the published genomes of K-12 and O157:H7.

          Results

          The genomic locations of IS elements reveal numerous differences between B, K-12, and O157:H7. IS elements occur in hok-sok loci (homologous to plasmid stabilization systems) in both B and K-12, whereas these same loci lack IS elements in O157:H7. IS elements in B and K-12 are often found in locations corresponding to O157:H7-specific sequences, which suggests IS involvement in chromosomal rearrangements including the incorporation of foreign DNA. Some sequences specific to B are identified, as reported previously for O157:H7. The extent of nucleotide sequence divergence between B and K-12 is <2% for most sequences adjacent to IS elements. By contrast, B and K-12 share only a few IS locations besides those in hok-sok loci. Several phenotypic features of B are explained by IS elements, including differential porin expression from K-12.

          Conclusions

          These data reveal a high level of IS activity since E. coli B, K-12, and O157:H7 diverged from a common ancestor, including IS association with deletions and incorporation of horizontally acquired genes as well as transpositions. These findings indicate the important role of IS elements in genome plasticity and divergence.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence During 2,000 Generations

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The evolutionary dynamics of repetitive DNA in eukaryotes.

            Repetitive DNA sequences form a large portion of the genomes of eukaryotes. The 'selfish DNA' hypothesis proposes that they are maintained by their ability to replicate within the genome. The behaviour of repetitive sequences can result in mutations that cause genetic diseases, and confer significant fitness losses on the organism. Features of the organization of repetitive sequences in eukaryotic genomes, and their distribution in natural populations, reflect the evolutionary forces acting on selfish DNA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insertion sequences.

              Insertion sequences (ISs) constitute an important component of most bacterial genomes. Over 500 individual ISs have been described in the literature to date, and many more are being discovered in the ongoing prokaryotic and eukaryotic genome-sequencing projects. The last 10 years have also seen some striking advances in our understanding of the transposition process itself. Not least of these has been the development of various in vitro transposition systems for both prokaryotic and eukaryotic elements and, for several of these, a detailed understanding of the transposition process at the chemical level. This review presents a general overview of the organization and function of insertion sequences of eubacterial, archaebacterial, and eukaryotic origins with particular emphasis on bacterial elements and on different aspects of the transposition mechanism. It also attempts to provide a framework for classification of these elements by assigning them to various families or groups. A total of 443 members of the collection have been grouped in 17 families based on combinations of the following criteria: (i) similarities in genetic organization (arrangement of open reading frames); (ii) marked identities or similarities in the enzymes which mediate the transposition reactions, the recombinases/transposases (Tpases); (iii) similar features of their ends (terminal IRs); and (iv) fate of the nucleotide sequence of their target sites (generation of a direct target duplication of determined length). A brief description of the mechanism(s) involved in the mobility of individual ISs in each family and of the structure-function relationships of the individual Tpases is included where available.
                Bookmark

                Author and article information

                Journal
                BMC Microbiol
                BMC Microbiology
                BioMed Central (London )
                1471-2180
                2002
                9 July 2002
                : 2
                : 18
                Affiliations
                [1 ]Laboratoire Plasticité et Expression des Génomes Microbiens, Team "Contrôle de l'Expression des Gènes", CNRS FRE2383, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
                [2 ]Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
                [3 ]Laboratoire Plasticité et Expression des Génomes Microbiens, CNRS FRE2383, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
                [4 ]Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA
                Article
                1471-2180-2-18
                10.1186/1471-2180-2-18
                117601
                12106505
                2c698178-e42b-426e-8ae4-ba28d7201417
                Copyright © 2002 Schneider et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                History
                : 10 April 2002
                : 9 July 2002
                Categories
                Research Article

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article