0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanotechnological Advancements for the Theranostic Intervention in Anaplastic Thyroid Cancer: Current Perspectives and Future Direction

      1 , 2 , 2 , 1
      Current Cancer Drug Targets
      Bentham Science Publishers Ltd.

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract:

          Anaplastic thyroid cancer is the rarest, most aggressive, and undifferentiated class of thyroid cancer, accounting for nearly forty percent of all thyroid cancer-related deaths. It is caused by alterations in many cellular pathways like MAPK, PI3K/AKT/mTOR, ALK, Wnt activation, and TP53 inactivation. Although many treatment strategies, such as radiation therapy and chemotherapy, have been proposed to treat anaplastic thyroid carcinoma, they are usually accompanied by concerns such as resistance, which may lead to the lethality of the patient. The emerging nanotechnology-based approaches cater the purposes such as targeted drug delivery and modulation in drug release patterns based on internal or external stimuli, leading to an increase in drug concentration at the site of the action that gives the required therapeutic action as well as modulation in diagnostic intervention with the help of dye property materials. Nanotechnological platforms like liposomes, micelles, dendrimers, exosomes, and various nanoparticles are available and are of high research interest for therapeutic intervention in anaplastic thyroid cancer. The pro gression of the disease can also be traced by using magnetic probes or radio-labeled probes and quantum dots that serve as a diagnostic intervention in anaplastic thyroid cancer.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: not found

          Liposome: classification, preparation, and applications

          Liposomes, sphere-shaped vesicles consisting of one or more phospholipid bilayers, were first described in the mid-60s. Today, they are a very useful reproduction, reagent, and tool in various scientific disciplines, including mathematics and theoretical physics, biophysics, chemistry, colloid science, biochemistry, and biology. Since then, liposomes have made their way to the market. Among several talented new drug delivery systems, liposomes characterize an advanced technology to deliver active molecules to the site of action, and at present, several formulations are in clinical use. Research on liposome technology has progressed from conventional vesicles to ‘second-generation liposomes’, in which long-circulating liposomes are obtained by modulating the lipid composition, size, and charge of the vesicle. Liposomes with modified surfaces have also been developed using several molecules, such as glycolipids or sialic acid. This paper summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations in respect to industrial applicability and regulatory requirements concerning liposomal drug formulations based on FDA and EMEA documents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunological aspects of cancer chemotherapy.

            Accumulating evidence indicates that the innate and adaptive immune systems make a crucial contribution to the antitumour effects of conventional chemotherapy-based and radiotherapy-based cancer treatments. Moreover, the molecular and cellular bases of the immunogenicity of cell death that is induced by cytotoxic agents are being progressively unravelled, challenging the guidelines that currently govern the development of anticancer drugs. Here, we review the immunological aspects of conventional cancer treatments and propose that future successes in the fight against cancer will rely on the development and clinical application of combined chemo- and immunotherapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology.

              Cancer nanotherapeutics are progressing at a steady rate; research and development in the field has experienced an exponential growth since early 2000's. The path to the commercialization of oncology drugs is long and carries significant risk; however, there is considerable excitement that nanoparticle technologies may contribute to the success of cancer drug development. The pace at which pharmaceutical companies have formed partnerships to use proprietary nanoparticle technologies has considerably accelerated. It is now recognized that by enhancing the efficacy and/or tolerability of new drug candidates, nanotechnology can meaningfully contribute to create differentiated products and improve clinical outcome. This review describes the lessons learned since the commercialization of the first-generation nanomedicines including DOXIL® and Abraxane®. It explores our current understanding of targeted and non-targeted nanoparticles that are under various stages of development, including BIND-014 and MM-398. It highlights the opportunities and challenges faced by nanomedicines in contemporary oncology, where personalized medicine is increasingly the mainstay of cancer therapy. We revisit the fundamental concepts of enhanced permeability and retention effect (EPR) and explore the mechanisms proposed to enhance preferential "retention" in the tumor, whether using active targeting of nanoparticles, binding of drugs to their tumoral targets or the presence of tumor associated macrophages. The overall objective of this review is to enhance our understanding in the design and development of therapeutic nanoparticles for treatment of cancers. Copyright © 2013 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Current Cancer Drug Targets
                CCDT
                Bentham Science Publishers Ltd.
                15680096
                March 2024
                March 2024
                : 24
                : 3
                : 245-270
                Affiliations
                [1 ]Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
                [2 ]Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
                Article
                10.2174/1568009623666230707155145
                2c6012e9-7d90-4390-b67b-8b567039ee61
                © 2024
                History

                Comments

                Comment on this article