9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ultra-processed Foods and Cardiovascular Diseases: Potential Mechanisms of Action

      1 , 2 , 3 , 4 , 5 , 6
      Advances in Nutrition
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Ultra-processed foods are industrially manufactured ready-to-eat or ready-to-heat formulations containing food additives and little or no whole foods, in contrast to processed foods, which are whole foods preserved by traditional techniques such as canning or pickling. Recent epidemiological studies suggest that higher consumption of ultra-processed food is associated with increased risk of cardiovascular disease (CVD). However, epidemiological evidence needs to be corroborated with criteria of biological plausibility. This review summarizes the current evidence on the putative biological mechanisms underlying the associations between ultra-processed foods and CVD. Research ranging from laboratory-based to prospective epidemiological studies and experimental evidence suggest that ultra-processed foods may affect cardiometabolic health through a myriad of mechanisms, beyond the traditionally recognized individual nutrients. Processing induces significant changes to the food matrix, for which ultra-processed foods may affect health outcomes differently than unrefined whole foods with similar nutritional composition. Notably, the highly degraded physical structure of ultra-processed foods may affect cardiometabolic health by influencing absorption kinetics, satiety, glycemic response, and the gut microbiota composition and function. Food additives and neo-formed contaminants produced during processing may also play a role in CVD risk. Key biological pathways include altered serum lipid concentrations, modified gut microbiota and host–microbiota interactions, obesity, inflammation, oxidative stress, dysglycemia, insulin resistance, and hypertension. Further research is warranted to clarify the proportional harm associated with the nutritional composition, food additives, physical structure, and other attributes of ultra-processed foods. Understanding how ultra-processing changes whole foods and through which pathways these foods affect health is a prerequisite for eliminating harmful processing techniques and ingredients.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Heart Disease and Stroke Statistics—2021 Update: A Report From the American Heart Association

          The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2021 Statistical Update is the product of a full year’s worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year’s edition includes data on the monitoring and benefits of cardiovascular health in the population, an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors related to cardiovascular disease. Each of the 27 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015

            Background The burden of cardiovascular diseases (CVDs) remains unclear in many regions of the world. Objectives The GBD (Global Burden of Disease) 2015 study integrated data on disease incidence, prevalence, and mortality to produce consistent, up-to-date estimates for cardiovascular burden. Methods CVD mortality was estimated from vital registration and verbal autopsy data. CVD prevalence was estimated using modeling software and data from health surveys, prospective cohorts, health system administrative data, and registries. Years lived with disability (YLD) were estimated by multiplying prevalence by disability weights. Years of life lost (YLL) were estimated by multiplying age-specific CVD deaths by a reference life expectancy. A sociodemographic index (SDI) was created for each location based on income per capita, educational attainment, and fertility. Results In 2015, there were an estimated 422.7 million cases of CVD (95% uncertainty interval: 415.53 to 427.87 million cases) and 17.92 million CVD deaths (95% uncertainty interval: 17.59 to 18.28 million CVD deaths). Declines in the age-standardized CVD death rate occurred between 1990 and 2015 in all high-income and some middle-income countries. Ischemic heart disease was the leading cause of CVD health lost globally, as well as in each world region, followed by stroke. As SDI increased beyond 0.25, the highest CVD mortality shifted from women to men. CVD mortality decreased sharply for both sexes in countries with an SDI >0.75. Conclusions CVDs remain a major cause of health loss for all regions of the world. Sociodemographic change over the past 25 years has been associated with dramatic declines in CVD in regions with very high SDI, but only a gradual decrease or no change in most regions. Future updates of the GBD study can be used to guide policymakers who are focused on reducing the overall burden of noncommunicable disease and achieving specific global health targets for CVD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease

              Food is a primordial need for our survival and well-being. However, diet is not only essential to maintain human growth, reproduction, and health, but it also modulates and supports the symbiotic microbial communities that colonize the digestive tract-the gut microbiota. Type, quality, and origin of our food shape our gut microbes and affect their composition and function, impacting host-microbe interactions. In this review, we will focus on dietary fibers, which interact directly with gut microbes and lead to the production of key metabolites such as short-chain fatty acids, and discuss how dietary fiber impacts gut microbial ecology, host physiology, and health. Hippocrates' notion "Let food be thy medicine and medicine be thy food" remains highly relevant millennia later, but requires consideration of how diet can be used for modulation of gut microbial ecology to promote health.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advances in Nutrition
                Oxford University Press (OUP)
                2161-8313
                2156-5376
                May 03 2021
                May 03 2021
                Affiliations
                [1 ]Department of Epidemiology, School of Global Public Health, New York University, New York, NY, USA
                [2 ]School of Pharmacy and Health Sciences, Fairleigh Dickinson University, Florham Park, NJ, USA
                [3 ]Division of Cardiology, Lenox Hill Hospital, Northwell Health, New York, NY, USA
                [4 ]Public Health Nutrition Program, School of Global Public Health, New York University, New York, NY, USA
                [5 ]Department of Population Health, NYU Grossman School of Medicine, New York University, New York, NY, USA
                [6 ]Rory Meyers College of Nursing, New York University, New York, NY, USA
                Article
                10.1093/advances/nmab049
                33942057
                2c3affba-405f-42e8-9dfd-9d566d4f956a
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article