26
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disentangling the Frames, the State of Research on the Alphavirus 6K and TF Proteins

      review-article
      , *
      ,
      Viruses
      MDPI
      alphavirus, 6K, transframe, frameshifting, budding

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For 30 years it was thought the alphavirus 6K gene encoded a single 6 kDa protein. However, through a bioinformatics search 10 years ago, it was discovered that there is a frameshifting event and two proteins, 6K and transframe (TF), are translated from the 6K gene. Thus, many functions attributed to the 6K protein needed reevaluation to determine if they properly belong to 6K, TF, or both proteins. In this mini-review, we reevaluate the past research on 6K and put those results in context where there are two proteins, 6K and TF, instead of one. Additionally, we discuss the most cogent outstanding questions for 6K and TF research, including their collective importance in alphavirus budding and their potential importance in disease based on the latest virulence data.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Rational design of potent sialidase-based inhibitors of influenza virus replication.

          Two potent inhibitors based on the crystal structure of influenza virus sialidase have been designed. These compounds are effective inhibitors not only of the enzyme, but also of the virus in cell culture and in animal models. The results provide an example of the power of rational, computer-assisted drug design, as well as indicating significant progress in the development of a new therapeutic or prophylactic treatment for influenza infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure and mechanism of the M2 proton channel of influenza A virus.

            The integral membrane protein M2 of influenza virus forms pH-gated proton channels in the viral lipid envelope. The low pH of an endosome activates the M2 channel before haemagglutinin-mediated fusion. Conductance of protons acidifies the viral interior and thereby facilitates dissociation of the matrix protein from the viral nucleoproteins--a required process for unpacking of the viral genome. In addition to its role in release of viral nucleoproteins, M2 in the trans-Golgi network (TGN) membrane prevents premature conformational rearrangement of newly synthesized haemagglutinin during transport to the cell surface by equilibrating the pH of the TGN with that of the host cell cytoplasm. Inhibiting the proton conductance of M2 using the anti-viral drug amantadine or rimantadine inhibits viral replication. Here we present the structure of the tetrameric M2 channel in complex with rimantadine, determined by NMR. In the closed state, four tightly packed transmembrane helices define a narrow channel, in which a 'tryptophan gate' is locked by intermolecular interactions with aspartic acid. A carboxy-terminal, amphipathic helix oriented nearly perpendicular to the transmembrane helix forms an inward-facing base. Lowering the pH destabilizes the transmembrane helical packing and unlocks the gate, admitting water to conduct protons, whereas the C-terminal base remains intact, preventing dissociation of the tetramer. Rimantadine binds at four equivalent sites near the gate on the lipid-facing side of the channel and stabilizes the closed conformation of the pore. Drug-resistance mutations are predicted to counter the effect of drug binding by either increasing the hydrophilicity of the pore or weakening helix-helix packing, thus facilitating channel opening.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Influenza virus assembly and budding.

              Influenza A virus causes seasonal epidemics, sporadic pandemics and is a significant global health burden. Influenza virus is an enveloped virus that contains a segmented negative strand RNA genome. Assembly and budding of progeny influenza virions is a complex, multi-step process that occurs in lipid raft domains on the apical membrane of infected cells. The viral proteins hemagglutinin (HA) and neuraminidase (NA) are targeted to lipid rafts, causing the coalescence and enlargement of the raft domains. This clustering of HA and NA may cause a deformation of the membrane and the initiation of the virus budding event. M1 is then thought to bind to the cytoplasmic tails of HA and NA where it can then polymerize and form the interior structure of the emerging virion. M1, bound to the cytoplasmic tails of HA and NA, additionally serves as a docking site for the recruitment of the viral RNPs and may mediate the recruitment of M2 to the site of virus budding. M2 initially stabilizes the site of budding, possibly enabling the polymerization of the matrix protein and the formation of filamentous virions. Subsequently, M2 is able to alter membrane curvature at the neck of the budding virus, causing membrane scission and the release of the progeny virion. This review investigates the latest research on influenza virus budding in an attempt to provide a step-by-step analysis of the assembly and budding processes for influenza viruses. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                18 August 2017
                August 2017
                : 9
                : 8
                : 228
                Affiliations
                Department of Biology at Indiana University, Bloomington, IN 47405, USA; jolramse@ 123456indiana.edu
                Author notes
                [* ]Correspondence: sumukhop@ 123456indiana.edu
                Author information
                https://orcid.org/0000-0002-3774-5896
                https://orcid.org/0000-0001-9230-4746
                Article
                viruses-09-00228
                10.3390/v9080228
                5580485
                28820485
                2c24c4dc-4226-4074-84af-3be91f0e178f
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 June 2017
                : 16 August 2017
                Categories
                Review

                Microbiology & Virology
                alphavirus,6k,transframe,frameshifting,budding
                Microbiology & Virology
                alphavirus, 6k, transframe, frameshifting, budding

                Comments

                Comment on this article