22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      P450s and UGTs: Key Players in the Structural Diversity of Triterpenoid Saponins

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recent spread of next-generation sequencing techniques has facilitated transcriptome analyses of non-model plants. As a result, many of the genes encoding enzymes related to the production of specialized metabolites have been identified. Compounds derived from 2,3-oxidosqualene (the common precursor of sterols, steroids and triterpenoids), a linear compound of 30 carbon atoms produced through the mevalonate pathway, are called triterpenes. These include essential sterols, which are structural components of biomembranes; steroids such as the plant hormones, brassinolides and the toxin in potatoes, solanine; as well as the structurally diverse triterpenoids. Triterpenoids containing one or more sugar moieties attached to triterpenoid aglycones are called triterpenoid saponins. Triterpenoid saponins have been shown to have various medicinal properties, such as anti-inflammatory, anticancerogenic and antiviral effects. This review summarizes the recent progress in gene discovery and elucidates the biochemical functions of biosynthetic enzymes in triterpenoid saponin biosynthesis. Special focus is placed on key players in generating the structural diversity of triterpenoid saponins, cytochrome P450 monooxygenases (P450s) and the UDP-dependent glycosyltransferases (UGTs). Perspectives on further gene discovery and the use of biosynthetic genes for the microbial production of plant-derived triterpenoid saponins are also discussed.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Data access for the 1,000 Plants (1KP) project

          The 1,000 plants (1KP) project is an international multi-disciplinary consortium that has generated transcriptome data from over 1,000 plant species, with exemplars for all of the major lineages across the Viridiplantae (green plants) clade. Here, we describe how to access the data used in a phylogenomics analysis of the first 85 species, and how to visualize our gene and species trees. Users can develop computational pipelines to analyse these data, in conjunction with data of their own that they can upload. Computationally estimated protein-protein interactions and biochemical pathways can be visualized at another site. Finally, we comment on our future plans and how they fit within this scalable system for the dissemination, visualization, and analysis of large multi-species data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Triterpene biosynthesis in plants.

            The triterpenes are one of the most numerous and diverse groups of plant natural products. They are complex molecules that are, for the most part, beyond the reach of chemical synthesis. Simple triterpenes are components of surface waxes and specialized membranes and may potentially act as signaling molecules, whereas complex glycosylated triterpenes (saponins) provide protection against pathogens and pests. Simple and conjugated triterpenes have a wide range of applications in the food, health, and industrial biotechnology sectors. Here, we review recent developments in the field of triterpene biosynthesis, give an overview of the genes and enzymes that have been identified to date, and discuss strategies for discovering new triterpene biosynthetic pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A P450-centric view of plant evolution.

              Being by far the largest family of enzymes to support plant metabolism, the cytochrome P450s (CYPs) constitute an excellent reporter of metabolism architecture and evolution. The huge superfamily of CYPs found in angiosperms is built on the successful evolution of 11 ancestral genes, with very different fates and progenies. Essential functions in the production of structural components (membrane sterols), light harvesting (carotenoids) or hormone biosynthesis kept some of them under purifying selection, limiting duplication and sub/neofunctionalization. One group (the CYP71 clan) after an early trigger to diversification, has kept growing, producing bursts of gene duplications at an accelerated rate. The CYP71 clan now represents more than half of all CYPs in higher plants. Such bursts of gene duplication are likely to contribute to adaptation to specific niches and to speciation. They also occur, although with lower frequency, in gene families under purifying selection. The CYP complement (CYPomes) of rice and the model grass weed Brachypodium distachyon have been compared to view evolution in a narrower time window. The results show that evolution of new functions in plant metabolism is a very long-term process. Comparative analysis of the plant CYPomes provides information on the successive steps required for the evolution of land plants, and points to several cases of convergent evolution in plant metabolism. It constitutes a very useful tool for spotting essential functions in plant metabolism and to guide investigations on gene function. The Plant Journal © 2011 Blackwell Publishing Ltd. No claim to original US government works.
                Bookmark

                Author and article information

                Journal
                Plant Cell Physiol
                Plant Cell Physiol
                pcp
                pcellphys
                Plant and Cell Physiology
                Oxford University Press
                0032-0781
                1471-9053
                August 2015
                06 May 2015
                : 56
                : 8
                : 1463-1471
                Affiliations
                Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita Osaka, 565-0871 Japan
                Author notes
                *Corresponding author: E-mail, hseki@ 123456bio.eng.osaka-u.ac.jp ; Fax, +81-6-6879-7426.
                Article
                pcv062
                10.1093/pcp/pcv062
                7107090
                25951908
                2bfd3f4f-3ec8-4d8f-9cee-e6c1d772c489
                © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                : 9 February 2015
                : 20 April 2015
                Page count
                Pages: 9
                Categories
                Mini Review

                Plant science & Botany
                biosynthesis,cytochrome p450 monooxygenase,oxidosqualene cyclase,plant specialized metabolites,triterpenoid saponin,udp-dependent glycosyltransferase

                Comments

                Comment on this article