15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Pulmonary vascular remodeling in pulmonary hypertension

      Cell and Tissue Research
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Pulmonary vascular remodeling is the key structural alteration in pulmonary hypertension. This process involves changes in intima, media, and adventitia, often with the interplay of inflammatory cells. We review the pathology of these changes and highlight some of the pathogenetic mechanisms that underlie the remodeling process. </p>

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Modern age pathology of pulmonary arterial hypertension.

          The impact of modern treatments of pulmonary arterial hypertension (PAH) on pulmonary vascular pathology remains unknown. To assess the spectrum of pulmonary vascular remodeling in the modern era of PAH medication. Assessment of pulmonary vascular remodeling and inflammation in 62 PAH and 28 control explanted lungs systematically sampled. Intima and intima plus media fractional thicknesses of pulmonary arteries were increased in the PAH group versus the control lungs and correlated with pulmonary hemodynamic measurements. Despite a high variability of morphological measurements within a given PAH lung and among all PAH lungs, distinct pathological subphenotypes were detected in cohorts of PAH lungs. These included a subset of lungs lacking intima or, most prominently, media remodeling, which had similar numbers of profiles of plexiform lesions as those in lungs with more pronounced remodeling. Marked perivascular inflammation was present in a high number of PAH lungs and correlated with intima plus media remodeling. The number of profiles of plexiform lesions was significantly lower in lungs of male patients and those never treated with prostacyclin or its analogs. Our results indicate that multiple features of pulmonary vascular remodeling are present in patients treated with modern PAH therapies. Perivascular inflammation may have an important role in the processes of vascular remodeling, all of which may ultimately lead to increased pulmonary artery pressure. Moreover, our study provides a framework to interpret and design translational studies in PAH.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension.

            Our understanding of the pathobiology of severe pulmonary hypertension, usually a fatal disease, has been hampered by the lack of information of its natural history. We have demonstrated that, in human severe pulmonary hypertension, the precapillary pulmonary arteries show occlusion by proliferated endothelial cells. Vascular endothelial growth factor (VEGF) and its receptor 2 (VEGFR-2) are involved in proper maintenance, differentiation, and function of endothelial cells. We demonstrate here that VEGFR-2 blockade with SU5416 in combination with chronic hypobaric hypoxia causes severe pulmonary hypertension associated with precapillary arterial occlusion by proliferating endothelial cells. Prior to and concomitant with the development of severe pulmonary hypertension, lungs of chronically hypoxic SU5416-treated rats show significant pulmonary endothelial cell death, as demonstrated by activated caspase 3 immunostaining and TUNEL. The broad caspase inhibitor Z-Asp-CH2-DCB prevents the development of intravascular pulmonary endothelial cell growth and severe pulmonary hypertension caused by the combination of SU5416 and chronic hypoxia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammation, growth factors, and pulmonary vascular remodeling.

              Inflammatory processes are prominent in various types of human and experimental pulmonary hypertension (PH) and are increasingly recognized as major pathogenic components of pulmonary vascular remodeling. Macrophages, T and B lymphocytes, and dendritic cells are present in the vascular lesions of PH, whether in idiopathic pulmonary arterial hypertension (PAH) or PAH related to more classical forms of inflammatory syndromes such as connective tissue diseases, human immunodeficiency virus (HIV), or other viral etiologies. Similarly, the presence of circulating chemokines and cytokines, viral protein components (e.g., HIV-1 Nef), and increased expression of growth (such as vascular endothelial growth factor and platelet-derived growth factor) and transcriptional (e.g., nuclear factor of activated T cells or NFAT) factors in these patients are thought to contribute directly to further recruitment of inflammatory cells and proliferation of smooth muscle and endothelial cells. Other processes, such as mitochondrial and ion channel dysregulation, seem to convey a state of cellular resistance to apoptosis; this has recently emerged as a necessary event in the pathogenesis of pulmonary vascular remodeling. Thus, the recognition of complex inflammatory disturbances in the vascular remodeling process offers potential specific targets for therapy and has recently led to clinical trials investigating, for example, the use of tyrosine kinase inhibitors. This paper provides an overview of specific inflammatory pathways involving cells, chemokines and cytokines, cellular dysfunctions, growth factors, and viral proteins, highlighting their potential role in pulmonary vascular remodeling and the possibility of future targeted therapy.
                Bookmark

                Author and article information

                Journal
                Cell and Tissue Research
                Cell Tissue Res
                Springer Science and Business Media LLC
                0302-766X
                1432-0878
                March 2017
                December 26 2016
                March 2017
                : 367
                : 3
                : 643-649
                Article
                10.1007/s00441-016-2539-y
                5408737
                28025704
                2bbb3640-4537-4fa6-961a-7996cdc5456b
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article