6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of NLRP3 Inflammasome Activation in the Epithelial to Mesenchymal Transition Process During the Fibrosis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fibrosis is considered a complex form of tissue damage commonly present in the end stage of many diseases. It is also related to a high percentage of death, whose predominant characteristics are an excessive and abnormal deposition of fibroblasts and myofibroblasts -derived extracellular matrix (ECM) components. Epithelial-to-mesenchymal transition (EMT), a process in which epithelial cells gradually change to mesenchymal ones, is a major contributor in the pathogenesis of fibrosis. The key mediator of EMT is a multifunctional cytokine called transforming growth factor-β (TGF-β) that acts as the main inducer of the ECM assembly and remodeling through the phosphorylation of Smad2/3, which ultimately forms a complex with Smad4 and translocates into the nucleus. On the other hand, the bone morphogenic protein-7 (BMP-7), a member of the TGF family, reverses EMT by directly counteracting TGF-β induced Smad-dependent cell signaling. NLRP3 (NACHT, LRR, and PYD domains-containing protein 3), in turn, acts as cytosolic sensors of microbial and self-derived molecules and forms an immune complex called inflammasome in the context of inflammatory commitments. NLRP3 inflammasome assembly is triggered by extracellular ATP, reactive oxygen species (ROS), potassium efflux, calcium misbalance, and lysosome disruption. Due to its involvement in multiple diseases, NLRP3 has become one of the most studied pattern-recognition receptors (PRRs). Nevertheless, the role of NLRP3 in fibrosis development has not been completely elucidated. In this review, we described the relation of the previously mentioned fibrosis pathway with the NLRP3 inflammasome complex formation, especially EMT-related pathways. For now, it is suggested that the EMT happens independently from the oligomerization of the whole inflammasome complex, requiring just the presence of the NLRP3 receptor and the ASC protein to trigger the EMT events, and we will present different pieces of research that give controversial point of views.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The NLRP3 inflammasome: molecular activation and regulation to therapeutics

            NLRP3 (NACHT, LRR and PYD domains-containing protein 3) is an intracellular sensor that detects a broad range of microbial motifs, endogenous danger signals and environmental irritants, resulting in the formation and activation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase-1-dependent release of the proinflammatory cytokines, IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. Recent studies have revealed new regulators of the NLRP3 inflammasome, including new interacting or regulatory proteins, metabolic pathways and a regulatory mitochondrial hub. In this Review, we present the molecular, cell biological and biochemical basis of NLRP3 activation and regulation, and describe how this mechanistic understanding is leading to potential therapeutics that target the NLRP3 inflammasome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crohn's disease.

              Crohn's disease is a chronic inflammatory disease of the gastrointestinal tract, with increasing incidence worldwide. Crohn's disease might result from a complex interplay between genetic susceptibility, environmental factors, and altered gut microbiota, leading to dysregulated innate and adaptive immune responses. The typical clinical scenario is a young patient presenting with abdominal pain, chronic diarrhoea, weight loss, and fatigue. Assessment of disease extent and of prognostic factors for complications is paramount to guide therapeutic decisions. Current strategies aim for deep and long-lasting remission, with the goal of preventing complications, such as surgery, and blocking disease progression. Central to these strategies is the introduction of early immunosuppression or combination therapy with biologicals in high-risk patients, combined with a tight and frequent control of inflammation, and adjustment of therapy on the basis of that assessment (treat to target strategy). The therapeutic armamentarium for Crohn's disease is expanding, and therefore the need to develop biomarkers that can predict response to therapies will become increasingly important for personalised medicine decisions in the near future. In this Seminar, we provide a physician-oriented overview of Crohn's disease in adults, ranging from epidemiology and cause to clinical diagnosis, natural history, patient stratification and clinical management, and ending with an overview of emerging therapies and future directions for research.
                Bookmark

                Author and article information

                Contributors
                URI : http://loop.frontiersin.org/people/901643/overview
                URI : http://loop.frontiersin.org/people/902636/overview
                URI : http://loop.frontiersin.org/people/176942/overview
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                20 May 2020
                2020
                : 11
                : 883
                Affiliations
                [1] 1Department of Pathology, Federal University of Parana , Curitiba, Brazil
                [2] 2Instituto Carlos Chagas, Fiocruz-Parana , Curitiba, Brazil
                Author notes

                Edited by: Robson Coutinho-Silva, Federal University of Rio de Janeiro, Brazil

                Reviewed by: Alberto Baroja-Mazo, Biomedical Research Institute of Murcia (IMIB), Spain; Junya Masumoto, Ehime University Graduate School of Medicine, Japan

                *Correspondence: Tarcio Teodoro Braga tarcio_tb@ 123456yahoo.com.br

                This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2020.00883
                7251178
                32508821
                2bae463f-336f-4fac-b1f3-c8c5707e0db1
                Copyright © 2020 Alyaseer, de Lima and Braga.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 February 2020
                : 16 April 2020
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 162, Pages: 14, Words: 12488
                Categories
                Immunology
                Review

                Immunology
                nlrp3,emt—epithelial to mesenchymal transition,fibrosis,inflammasome,tgf-β
                Immunology
                nlrp3, emt—epithelial to mesenchymal transition, fibrosis, inflammasome, tgf-β

                Comments

                Comment on this article