7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      HP-β-CD for the formulation of IgG and Ig-based biotherapeutics

      , ,
      International Journal of Pharmaceutics
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references198

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Development of therapeutic antibodies for the treatment of diseases

          It has been more than three decades since the first monoclonal antibody was approved by the United States Food and Drug Administration (US FDA) in 1986, and during this time, antibody engineering has dramatically evolved. Current antibody drugs have increasingly fewer adverse effects due to their high specificity. As a result, therapeutic antibodies have become the predominant class of new drugs developed in recent years. Over the past five years, antibodies have become the best-selling drugs in the pharmaceutical market, and in 2018, eight of the top ten bestselling drugs worldwide were biologics. The global therapeutic monoclonal antibody market was valued at approximately US$115.2 billion in 2018 and is expected to generate revenue of $150 billion by the end of 2019 and $300 billion by 2025. Thus, the market for therapeutic antibody drugs has experienced explosive growth as new drugs have been approved for treating various human diseases, including many cancers, autoimmune, metabolic and infectious diseases. As of December 2019, 79 therapeutic mAbs have been approved by the US FDA, but there is still significant growth potential. This review summarizes the latest market trends and outlines the preeminent antibody engineering technologies used in the development of therapeutic antibody drugs, such as humanization of monoclonal antibodies, phage display, the human antibody mouse, single B cell antibody technology, and affinity maturation. Finally, future applications and perspectives are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein drug stability: a formulation challenge.

            The increasing use of recombinantly expressed therapeutic proteins in the pharmaceutical industry has highlighted issues such as their stability during long-term storage and means of efficacious delivery that avoid adverse immunogenic side effects. Controlled chemical modifications, such as substitutions, acylation and PEGylation, have fulfilled some but not all of their promises, while hydrogels and lipid-based formulations could well be developed into generic delivery systems. Strategies to curb the aggregation and misfolding of proteins during storage are likely to benefit from the recent surge of interest in protein fibrillation. This might in turn lead to generally accepted guidelines and tests to avoid unforeseen adverse effects in drug delivery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Antibodies to watch in 2020

              ABSTRACT This 2020 installment of the annual ‘Antibodies to Watch’ series documents the antibody therapeutics approved in 2019 and in regulatory review in the United States or European Union, as well as those in late-stage clinical studies, as of November 2019*. At this time, a total of 5 novel antibody therapeutics (romosozumab, risankizumab, polatuzumab vedotin, brolucizumab, and crizanlizumab) had been granted a first approval in either the US or EU, and marketing applications for 13 novel antibody therapeutics (eptinezumab, teprotumumab, enfortumab vedotin, isatuximab, [fam-]trastuzumab deruxtecan, inebilizumab, leronlimab, sacituzumab govitecan, satralizumab, narsoplimab, tafasitamab, REGNEB3 and naxituximab) were undergoing review in these regions, which represent the major markets for antibody therapeutics. Also as of November 2019, 79 novel antibodies were undergoing evaluation in late-stage clinical studies. Of the 79 antibodies, 39 were undergoing evaluation in late-stage studies for non-cancer indications, with 2 of these (ublituximab, pamrevlumab) also in late-stage studies for cancer indications. Companies developing 7 (tanezumab, aducanumab, evinacumab, etrolizumab, sutimlimab, anifrolumab, and teplizumab) of the 39 drugs have indicated that they may submit a marketing application in either the US or EU in 2020. Of the 79 antibodies in late-stage studies, 40 were undergoing evaluation as treatments for cancer, and potentially 9 of these (belantamab mafodotin, oportuzumab monatox, margetuximab, dostarlimab, spartalizumab, 131I-omburtamab, loncastuximab tesirine, balstilimab, and zalifrelimab) may enter regulatory review in late 2019 or in 2020. Overall, the biopharmaceutical industry’s clinical pipeline of antibody therapeutics is robust, and should provide a continuous supply of innovative products for patients in the future. *Note on key updates through December 18, 2019: 1) the US Food and Drug Administration granted accelerated approval to enfortumab vedotin-ejfv (Padcev) on December 18, 2019, bringing the total number of novel antibody therapeutics granted a first approval in either the US or EU during 2019 to 6; 2) the European Commission approved romosozumab on December 9, 2019; 3) the European Medicines Agency issued a positive opinion for brolucizumab; 4) Sesen Bio initiated a rolling biologics license application (BLA) on December 6, 2019; 5) GlaxoSmithKline submitted a BLA for belantamab mafodotin; and 6) the status of the Phase 3 study (NCT04128696) of GSK3359609, a humanized IgG4 anti-ICOS antibody, in patients with head and neck squamous cell carcinoma was updated to recruiting from not yet recruiting.
                Bookmark

                Author and article information

                Journal
                International Journal of Pharmaceutics
                International Journal of Pharmaceutics
                Elsevier BV
                03785173
                May 2021
                May 2021
                : 601
                : 120531
                Article
                10.1016/j.ijpharm.2021.120531
                2b81458d-709c-4c03-becf-84a9bce6d403
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article