69
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dynein Modifiers in C. elegans: Light Chains Suppress Conditional Heavy Chain Mutants

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cytoplasmic dynein is a microtubule-dependent motor protein that functions in mitotic cells during centrosome separation, metaphase chromosome congression, anaphase spindle elongation, and chromosome segregation. Dynein is also utilized during interphase for vesicle transport and organelle positioning. While numerous cellular processes require cytoplasmic dynein, the mechanisms that target and regulate this microtubule motor remain largely unknown. By screening a conditional Caenorhabditis elegans cytoplasmic dynein heavy chain mutant at a semipermissive temperature with a genome-wide RNA interference library to reduce gene functions, we have isolated and characterized twenty dynein-specific suppressor genes. When reduced in function, these genes suppress dynein mutants but not other conditionally mutant loci, and twelve of the 20 specific suppressors do not exhibit sterile or lethal phenotypes when their function is reduced in wild-type worms. Many of the suppressor proteins, including two dynein light chains, localize to subcellular sites that overlap with those reported by others for the dynein heavy chain. Furthermore, knocking down any one of four putative dynein accessory chains suppresses the conditional heavy chain mutants, suggesting that some accessory chains negatively regulate heavy chain function. We also identified 29 additional genes that, when reduced in function, suppress conditional mutations not only in dynein but also in loci required for unrelated essential processes. In conclusion, we have identified twenty genes that in many cases are not essential themselves but are conserved and when reduced in function can suppress conditionally lethal C. elegans cytoplasmic dynein heavy chain mutants. We conclude that conserved but nonessential genes contribute to dynein function during the essential process of mitosis.

          Author Summary

          Microtubules and microtubule-dependent motor proteins segregate chromosomes during mitosis and also promote cellular organization in nondividing cells. An essential motor protein complex called cytoplasmic dynein powers many aspects of microtubule-dependent transport, but it is currently unclear how dynein is regulated such that it can execute different processes. We have performed a genome-wide screen to isolate genes that are involved in dynein-dependent processes. We determined that 20 of the 49 genes we identified specifically influenced the viability of dynein mutant strains but not the viability of other C. elegans mutants. Many of the proteins that specifically influence dynein localized to subcellular sites where the dynein heavy chain has been reported by others to be found. Additionally, we identified four dynein components that appear to negatively regulate the force-generating dynein heavy chain. The identification and initial characterization of this group of genes represents a route to identify genes that are not themselves essential but do participate in essential processes.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Functional genomic analysis of C. elegans chromosome I by systematic RNA interference.

          Complete genomic sequence is known for two multicellular eukaryotes, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, and it will soon be known for humans. However, biological function has been assigned to only a small proportion of the predicted genes in any animal. Here we have used RNA-mediated interference (RNAi) to target nearly 90% of predicted genes on C. elegans chromosome I by feeding worms with bacteria that express double-stranded RNA. We have assigned function to 13.9% of the genes analysed, increasing the number of sequenced genes with known phenotypes on chromosome I from 70 to 378. Although most genes with sterile or embryonic lethal RNAi phenotypes are involved in basal cell metabolism, many genes giving post-embryonic phenotypes have conserved sequences but unknown function. In addition, conserved genes are significantly more likely to have an RNAi phenotype than are genes with no conservation. We have constructed a reusable library of bacterial clones that will permit unlimited RNAi screens in the future; this should help develop a more complete view of the relationships between the genome, gene function and the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans.

            Genetic interference mediated by double-stranded RNA (RNAi) has been a valuable tool in the analysis of gene function in Caenorhabditis elegans. Here we report an efficient induction of RNAi using bacteria to deliver double-stranded RNA. This method makes use of bacteria that are deficient in RNaseIII, an enzyme that normally degrades a majority of dsRNAs in the bacterial cell. Bacteria deficient for RNaseIII were engineered to produce high quantities of specific dsRNA segments. When fed to C. elegans, such engineered bacteria were found to produce populations of RNAi-affected animals with phenotypes that were comparable in expressivity to the corresponding loss-of-function mutants. We found the method to be most effective in inducing RNAi for non-neuronal tissue of late larval and adult hermaphrodites, with decreased effectiveness in the nervous system, in early larval stages, and in males. Bacteria-induced RNAi phenotypes could be maintained over the course of several generations with continuous feeding, allowing for convenient assessments of the biological consequences of specific genetic interference and of continuous exposure to dsRNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans.

              A key challenge of functional genomics today is to generate well-annotated data sets that can be interpreted across different platforms and technologies. Large-scale functional genomics data often fail to connect to standard experimental approaches of gene characterization in individual laboratories. Furthermore, a lack of universal annotation standards for phenotypic data sets makes it difficult to compare different screening approaches. Here we address this problem in a screen designed to identify all genes required for the first two rounds of cell division in the Caenorhabditis elegans embryo. We used RNA-mediated interference to target 98% of all genes predicted in the C. elegans genome in combination with differential interference contrast time-lapse microscopy. Through systematic annotation of the resulting movies, we developed a phenotypic profiling system, which shows high correlation with cellular processes and biochemical pathways, thus enabling us to predict new functions for previously uncharacterized genes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                pgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                August 2007
                3 August 2007
                : 3
                : 8
                : e128
                Affiliations
                [1]Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
                Huntsman Cancer Institute, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: seanor@ 123456molbio.uoregon.edu
                Article
                07-PLGE-RA-0201R3 plge-03-08-02
                10.1371/journal.pgen.0030128
                1937013
                17676955
                2b787912-f14e-4404-a5eb-9e07fdb9fe54
                Copyright: © 2007 O'Rourke et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 March 2007
                : 20 June 2007
                Page count
                Pages: 16
                Categories
                Research Article
                Cell Biology
                Genetics and Genomics
                Caenorhabditis
                Eukaryotes
                Animals
                Custom metadata
                O'Rourke SM, Dorfman MD, Carter JC, Bowerman B (2007) Dynein modifiers in C. elegans: Light chains suppress conditional heavy chain mutants. PLoS Genet 3(8): e128. doi: 10.1371/journal.pgen.0030128

                Genetics
                Genetics

                Comments

                Comment on this article