11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synergism in aluminum and mercury neurotoxicity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aluminum and mercury are common neurotoxic contaminants in our environment – from the air we breathe to the water that we drink to the foods that we eat. It is remarkable that to date neither of these two well-established environmental neurotoxins (i.e. those having a general toxicity towards brain cells) and genotoxins (those agents which exhibit directed toxicity toward the genetic apparatus) have been critically studied, nor have their neurotoxicities been evaluated in human neurobiology or in cells of the human central nervous system (CNS). In this paper we report the effects of added aluminum [sulfate; Al₂(SO₄)₃] and/or mercury [sulfate; HgSO 4] to human neuronal-glial (HNG) cells in primary co-culture using the evolution of the pro-inflammatory transcription factor NF-kB (p50/p65) complex as a critical indicator for the onset of inflammatory neurodegeneration and pathogenic inflammatory signaling. As indexed by significant induction of the NF-kB (p50/p65) complex the results indicate: (i) a notable increase in pro-inflammatory signaling imparted by each of these two environmental neurotoxins toward HNG cells in the ambient 20-200 nM range; and (ii) a significant synergism in the neurotoxicity when aluminum (sulfate) and mercury (sulfate) were added together. This is the first report on the neurotoxic effects of aluminum sulfate and/or mercury sulfate on the initiation of inflammatory signaling in human brain cells in primary culture. The effects aluminum+mercury together on other neurologically important signaling molecules or the effects of other combinations of common environmental metallic neurotoxins to human neurobiology currently remain not well understood but certainly warrant additional investigation and further study in laboratory animals, in human primary tissue cultures of CNS cells, and in other neurobiologically realistic experimental test systems.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Inflamm-aging. An evolutionary perspective on immunosenescence.

          In this paper we extend the "network theory of aging," and we argue that a global reduction in the capacity to cope with a variety of stressors and a concomitant progressive increase in proinflammatory status are major characteristics of the aging process. This phenomenon, which we will refer to as "inflamm-aging," is provoked by a continuous antigenic load and stress. On the basis of evolutionary studies, we also argue that the immune and the stress responses are equivalent and that antigens are nothing other than particular types of stressors. We also propose to return macrophage to its rightful place as central actor not only in the inflammatory response and immunity, but also in the stress response. The rate of reaching the threshold of proinflammatory status over which diseases/disabilities ensue and the individual capacity to cope with and adapt to stressors are assumed to be complex traits with a genetic component. Finally, we argue that the persistence of inflammatory stimuli over time represents the biologic background (first hit) favoring the susceptibility to age-related diseases/disabilities. A second hit (absence of robust gene variants and/or presence of frail gene variants) is likely necessary to develop overt organ-specific age-related diseases having an inflammatory pathogenesis, such as atherosclerosis, Alzheimer's disease, osteoporosis, and diabetes. Following this perspective, several paradoxes of healthy centenarians (increase of plasma levels of inflammatory cytokines, acute phase proteins, and coagulation factors) are illustrated and explained. In conclusion, the beneficial effects of inflammation devoted to the neutralization of dangerous/harmful agents early in life and in adulthood become detrimental late in life in a period largely not foreseen by evolution, according to the antagonistic pleiotropy theory of aging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Inflammation in CNS neurodegenerative diseases

            Neurodegenerative diseases, the leading cause of morbidity and disability, are gaining increased attention as they impose a considerable socioeconomic impact, due in part to the ageing community. Neuronal damage is a pathological hallmark of Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, Huntington's disease, spinocerebellar ataxia and multiple sclerosis, although such damage is also observed following neurotropic viral infections, stroke, genetic white matter diseases and paraneoplastic disorders. Despite the different aetiologies, for example, infections, genetic mutations, trauma and protein aggregations, neuronal damage is frequently associated with chronic activation of an innate immune response in the CNS . The growing awareness that the immune system is inextricably involved in shaping the brain during development as well as mediating damage, but also regeneration and repair, has stimulated therapeutic approaches to modulate the immune system in neurodegenerative diseases. Here, we review the current understanding of how astrocytes and microglia, as well as neurons and oligodendrocytes, shape the neuroimmune response during development, and how aberrant responses that arise due to genetic or environmental triggers may predispose the CNS to neurodegenerative diseases. We discuss the known interactions between the peripheral immune system and the brain, and review the current concepts on how immune cells enter and leave the CNS . A better understanding of neuroimmune interactions during development and disease will be key to further manipulating these responses and the development of effective therapies to improve quality of life, and reduce the impact of neuroinflammatory and degenerative diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Small Intestine Converts Dietary Fructose into Glucose and Organic Acids

              Excessive consumption of sweets is a risk factor for metabolic syndrome. A major chemical feature of sweets is fructose. Despite strong ties between fructose and disease, the metabolic fate of fructose in mammals remains incompletely understood. Here we use isotope tracing and mass spectrometry to track the fate of glucose and fructose carbons in vivo , finding that dietary fructose is cleared by the small intestine. Clearance requires the fructose-phosphorylating enzyme ketohexokinase. Low doses of fructose are ~90% cleared by the intestine, with only trace fructose but extensive fructose-derived glucose, lactate, and glycerate found in the portal blood. High doses of fructose (≥1 g/kg) overwhelm intestinal fructose absorption and clearance, resulting in fructose reaching both the liver and colonic microbiota. Intestinal fructose clearance is augmented both by prior exposure to fructose and by feeding. We propose that the small intestine shields the liver from otherwise toxic fructose exposure. While it is commonly believed that the liver is the main site of fructose metabolism, Jang et al. show that it is actually the small intestine that clears most dietary fructose, and this is enhanced by feeding. High fructose doses spill over to the liver and to the colonic microbiota.
                Bookmark

                Author and article information

                Journal
                101725644
                47521
                Integr Food Nutr Metab
                Integr Food Nutr Metab
                Integrative food, nutrition and metabolism
                2056-8339
                25 April 2018
                13 April 2018
                May 2018
                21 June 2018
                : 5
                : 3
                : 10.15761/IFNM.1000214
                Affiliations
                [1 ]Russian Academy of Medical Sciences, Moscow 113152, Russia
                [2 ]Alchem Biotek Research, Toronto ON M5S 1A8, Canada
                [3 ]LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112, USA
                [4 ]Department of Neurology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112, USA
                [5 ]Department of Ophthalmology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112, USA
                Author notes
                Correspondence to: Walter J Lukiw, BS, MS, PhD, Professor of Neuroscience, Neurology and Ophthalmology, Bollinger Professor of Alzheimer’s disease, LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, LA 70112, USA, Tel: 5045990842; wlukiw@ 123456lsuhsc.edu
                Article
                NIHMS959291
                10.15761/IFNM.1000214
                6013271
                2b638dae-a797-4b70-b34b-2306ecef469f

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Categories
                Article

                Comments

                Comment on this article