2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expression of SRP-9001 dystrophin and stabilization of motor function up to 2 years post-treatment with delandistrogene moxeparvovec gene therapy in individuals with Duchenne muscular dystrophy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction: Delandistrogene moxeparvovec (SRP-9001) is an investigational gene transfer therapy designed for targeted expression of SRP-9001 dystrophin protein, a shortened dystrophin retaining key functional domains of the wild-type protein.

          Methods: This Phase 2, double-blind, two-part (48 weeks per part) crossover study (SRP-9001-102 [Study 102]; NCT03769116) evaluated delandistrogene moxeparvovec in patients, aged ≥4 to <8 years with Duchenne muscular dystrophy. Primary endpoints (Part 1) were change from baseline (CFBL) in SRP-9001 dystrophin expression (Week 12), by Western blot, and in North Star Ambulatory Assessment (NSAA) score (Week 48). Safety assessments included treatment-related adverse events (TRAEs). Patients were randomized and stratified by age to placebo (n = 21) or delandistrogene moxeparvovec (n = 20) and crossed over for Part 2.

          Results: SRP-9001 dystrophin expression was achieved in all patients: mean CFBL to Week 12 was 23.82% and 39.64% normal in Parts 1 and 2, respectively. In Part 1, CFBL to Week 48 in NSAA score (least-squares mean, LSM [standard error]) was +1.7 (0.6) with treatment versus +0.9 (0.6) for placebo; p = 0.37. Disparity in baseline motor function between groups likely confounded these results. In 4- to 5-year-olds with matched baseline motor function, CFBL to Week 48 in NSAA scores was significantly different (+2.5 points; p = 0.0172), but not significantly different in 6-to-7-year-olds with imbalanced baseline motor function (−0.7 points; p = 0.5384). For patients treated with delandistrogene moxeparvovec in Part 2, CFBL to Week 48 in NSAA score was +1.3 (2.7), whereas for those treated in Part 1, NSAA scores were maintained. As all patients in Part 2 were exposed to treatment, results were compared with a propensity-score-weighted external control (EC) cohort. The LSM difference in NSAA score between the Part 2 treated group and EC cohort was statistically significant (+2.0 points; p = 0.0009). The most common TRAEs were vomiting, decreased appetite, and nausea. Most occurred within the first 90 days and all resolved.

          Discussion: Results indicate robust expression of SRP-9001 dystrophin and overall stabilization in NSAA up to 2 years post-treatment. Differences in NSAA between groups in Part 1 were not significant for the overall population, likely because cohorts were stratified only by age, and other critical prognostic factors were not well matched at baseline.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management

          Since the publication of the Duchenne muscular dystrophy (DMD) care considerations in 2010, multidisciplinary care of this severe, progressive neuromuscular disease has evolved. In conjunction with improved patient survival, a shift to more anticipatory diagnostic and therapeutic strategies has occurred, with a renewed focus on patient quality of life. In 2014, a steering committee of experts from a wide range of disciplines was established to update the 2010 DMD care considerations, with the goal of improving patient care. The new care considerations aim to address the needs of patients with prolonged survival, to provide guidance on advances in assessments and interventions, and to consider the implications of emerging genetic and molecular therapies for DMD. The committee identified 11 topics to be included in the update, eight of which were addressed in the original care considerations. The three new topics are primary care and emergency management, endocrine management, and transitions of care across the lifespan. In part 1 of this three-part update, we present care considerations for diagnosis of DMD and neuromuscular, rehabilitation, endocrine (growth, puberty, and adrenal insufficiency), and gastrointestinal (including nutrition and dysphagia) management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: an evidence review

            Background Duchenne Muscular Dystrophy (DMD) is a rapidly progressive, lethal neuromuscular disorder, present from birth, which occurs almost exclusively in males. We have reviewed contemporary evidence of burden, epidemiology, illness costs and treatment patterns of DMD. This systematic review adhered to published methods with information also sought from the web and contacting registries. Searches were carried out from 2005 to June 2015. The population of interest was individuals with clearly defined DMD or their carers. Results Nine thousand eight hundred fifty titles were retrieved from searches. Fifty-eight studies were reviewed with three assessed as high, 33 as medium and 22 as low quality. We found two studies reporting birth and four reporting point prevalence, three reporting mortality, 41 reporting severity and/or progression, 18 reporting treatment patterns, 12 reporting quality of life, two reporting utility measures, three reporting costs of illness and three treatment guidelines. Birth prevalence ranged from 15.9 to 19.5 per 100,000 live births. Point prevalence per 100,000 males was for France, USA, UK and Canada, 10.9, 1.9, 2.2 and 6.1 respectively. A study of adult DMD patients at a centre in France found median survival for those born between 1970 and 1994 was 40.95 years compared to 25.77 years for those born between 1955 and 1969. Loss of ambulation occurred at a median age of 12 and ventilation starts at about 20 years. There was international variation in use of corticosteroids, scoliosis surgery, ventilation and physiotherapy. The economic cost of DMD climbs dramatically with disease progression – rising as much as 5.7 fold from the early ambulatory phase to the non-ambulatory phase in Germany. Conclusions This is the first systematic review of treatment, progression, severity and quality of life in DMD. It also provides the most recent description of the burden, epidemiology, illness costs and treatment patterns in DMD. There are evidence gaps, particularly in prevalence and mortality. People with DMD seem to be living longer, possibly due to corticosteroid use, cardiac medical management and ventilation. Future research should incorporate registry data to improve comparability across time and between countries and to investigate the quality of life impact as the condition progresses. Electronic supplementary material The online version of this article (doi:10.1186/s13023-017-0631-3) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Assessment of Systemic Delivery of rAAVrh74.MHCK7.micro-dystrophin in Children With Duchenne Muscular Dystrophy : A Nonrandomized Controlled Trial

              This nonrandomized controlled trial analyzes safety, biological, and functional outcomes associated with the infusion of rAAVrh74.MHCK7.micro-dystrophin gene transfer in a small group of patients with Duchenne muscular dystrophy. Question Is rAAVrh74.MHCK7.micro-dystrophin gene transfer safe and well tolerated in patients with Duchenne muscular dystrophy? Findings In this nonrandomized controlled trial of 4 young patients with Duchenne muscular dystrophy, rAAVrh74.MHCK7.micro-dystrophin gene transfer was well tolerated, with minimal adverse events, and was associated with robust micro-dystrophin expression, reduced serum creatine kinase levels, and functional improvement as measured by the North Star Ambulatory Assessment. Meaning These results indicated the safe systemic delivery of micro-dystrophin transgene and targeted expression of functional micro-dystrophin protein product, suggesting the potential for rAAVrh74.MHCK7.micro-dystrophin to provide clinically meaningful functional improvement that is greater than the standard of care. Importance Micro-dystrophin gene transfer shows promise for treating patients with Duchenne muscular dystrophy (DMD) using recombinant adeno-associated virus serotype rh74 (rAAVrh74) and codon-optimized human micro-dystrophin driven by a skeletal and cardiac muscle-specific promoter with enhanced cardiac expression (MHCK7). Objective To identify the 1-year safety and tolerability of intravenous rAAVrh74.MHCK7.micro-dystrophin in patients with DMD. Design, Setting, and Participants This open-label, phase 1/2a nonrandomized controlled trial was conducted at the Nationwide Children’s Hospital in Columbus, Ohio. It began on November 2, 2017, with a planned duration of follow-up of 3 years, ending in March 2021. The first 4 patients who met eligibility criteria were enrolled, consisting of ambulatory male children with DMD without preexisting AAVrh74 antibodies and a stable corticosteroid dose (≥12 weeks). Interventions A single dose of 2.0 × 10 14 vg/kg rAAVrh74.MHCK7.micro-dystrophin was infused through a peripheral limb vein. Daily prednisolone, 1 mg/kg, started 1 day before gene delivery (30-day taper after infusion). Main Outcomes and Measures Safety was the primary outcome. Secondary outcomes included micro-dystrophin expression by Western blot and immunohistochemistry. Functional outcomes measured by North Star Ambulatory Assessment (NSAA) and serum creatine kinase were exploratory outcomes. Results Four patients were included (mean [SD] age at enrollment, 4.8 [1.0] years). All adverse events (n = 53) were considered mild (33 [62%]) or moderate (20 [38%]), and no serious adverse events occurred. Eighteen adverse events were considered treatment related, the most common of which was vomiting (9 of 18 events [50%]). Three patients had transiently elevated γ-glutamyltransferase, which resolved with corticosteroids. At 12 weeks, immunohistochemistry of gastrocnemius muscle biopsy specimens revealed robust transgene expression in all patients, with a mean of 81.2% of muscle fibers expressing micro-dystrophin with a mean intensity of 96% at the sarcolemma. Western blot showed a mean expression of 74.3% without fat or fibrosis adjustment and 95.8% with adjustment. All patients had confirmed vector transduction and showed functional improvement of NSAA scores and reduced creatine kinase levels (posttreatment vs baseline) that were maintained for 1 year. Conclusions and Relevance This trial showed rAAVrh74.MHCK7.micro-dystrophin to be well tolerated and have minimal adverse events; the safe delivery of micro-dystrophin transgene; the robust expression and correct localization of micro-dystrophin protein; and improvements in creatine kinase levels and NSAA scores. These findings suggest that rAAVrh74.MHCK7.micro-dystrophin can provide functional improvement that is greater than that observed under standard of care. Trial Registration ClinicalTrials.gov Identifier: NCT03375164
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                11 July 2023
                2023
                : 11
                : 1167762
                Affiliations
                [1] 1 Center for Gene Therapy , Abigail Wexner Research Institute , Nationwide Children’s Hospital , Columbus, OH, United States
                [2] 2 Department of Pediatrics , The Ohio State University , Columbus, OH, United States
                [3] 3 Department of Neurology, The Ohio State University , Columbus, OH, United States
                [4] 4 UCLA Medical Center , Los Angeles, CA, United States
                [5] 5 Departments of Physical Medicine and Rehabilitation and Pediatrics, Lawrence J. Ellison Ambulatory Care Center, UC Davis Health , Sacramento, CA, United States
                [6] 6 Sarepta Therapeutics Inc , Cambridge, MA, United States
                Author notes

                Edited by: Marc Bartoli, Aix Marseille Université, France

                Reviewed by: Florian Barthelemy, University of California, Los Angeles, United States

                Matthew S. Alexander, University of Alabama at Birmingham, United States

                *Correspondence: Louise R. Rodino-Klapac, lrodinoklapac@ 123456sarepta.com
                Article
                1167762
                10.3389/fcell.2023.1167762
                10366687
                37497476
                2b634c58-d250-426a-8e87-ba99763d9834
                Copyright © 2023 Mendell, Shieh, McDonald, Sahenk, Lehman, Lowes, Reash, Iammarino, Alfano, Sabo, Woods, Skura, Mao, Staudt, Griffin, Lewis, Wang, Potter, Singh and Rodino-Klapac.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 February 2023
                : 09 June 2023
                Funding
                This study was sponsored and funded by Sarepta Therapeutics, Inc., Cambridge, MA, United States. Writing and editorial support for the preparation of this manuscript was funded by Sarepta Therapeutics, Inc., Cambridge, MA, United States and F. Hoffmann-La Roche Ltd., Basel, Switzerland.
                Categories
                Cell and Developmental Biology
                Original Research
                Custom metadata
                Molecular and Cellular Pathology

                duchenne muscular dystrophy,gene therapy,dystrophin,aavrh74,srp-9001

                Comments

                Comment on this article