3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Next-Generation Risk Assessment Case Study for Coumarin in Cosmetic Products

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Next-Generation Risk Assessment is defined as an exposure-led, hypothesis-driven risk assessment approach that integrates new approach methodologies (NAMs) to assure safety without the use of animal testing. These principles were applied to a hypothetical safety assessment of 0.1% coumarin in face cream and body lotion. For the purpose of evaluating the use of NAMs, existing animal and human data on coumarin were excluded. Internal concentrations (plasma C max) were estimated using a physiologically based kinetic model for dermally applied coumarin. Systemic toxicity was assessed using a battery of in vitro NAMs to identify points of departure (PoDs) for a variety of biological effects such as receptor-mediated and immunomodulatory effects (Eurofins SafetyScreen44 and BioMap Diversity 8 Panel, respectively), and general bioactivity (ToxCast data, an in vitro cell stress panel and high-throughput transcriptomics). In addition, in silico alerts for genotoxicity were followed up with the ToxTracker tool. The PoDs from the in vitro assays were plotted against the calculated in vivo exposure to calculate a margin of safety with associated uncertainty. The predicted C max values for face cream and body lotion were lower than all PoDs with margin of safety higher than 100. Furthermore, coumarin was not genotoxic, did not bind to any of the 44 receptors tested and did not show any immunomodulatory effects at consumer-relevant exposures. In conclusion, this case study demonstrated the value of integrating exposure science, computational modeling and in vitro bioactivity data, to reach a safety decision without animal data.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Adverse outcome pathway (AOP) development I: strategies and principles.

          An adverse outcome pathway (AOP) is a conceptual framework that organizes existing knowledge concerning biologically plausible, and empirically supported, links between molecular-level perturbation of a biological system and an adverse outcome at a level of biological organization of regulatory relevance. Systematic organization of information into AOP frameworks has potential to improve regulatory decision-making through greater integration and more meaningful use of mechanistic data. However, for the scientific community to collectively develop a useful AOP knowledgebase that encompasses toxicological contexts of concern to human health and ecological risk assessment, it is critical that AOPs be developed in accordance with a consistent set of core principles. Based on the experiences and scientific discourse among a group of AOP practitioners, we propose a set of five fundamental principles that guide AOP development: (1) AOPs are not chemical specific; (2) AOPs are modular and composed of reusable components-notably key events (KEs) and key event relationships (KERs); (3) an individual AOP, composed of a single sequence of KEs and KERs, is a pragmatic unit of AOP development and evaluation; (4) networks composed of multiple AOPs that share common KEs and KERs are likely to be the functional unit of prediction for most real-world scenarios; and (5) AOPs are living documents that will evolve over time as new knowledge is generated. The goal of the present article was to introduce some strategies for AOP development and detail the rationale behind these 5 key principles. Consideration of these principles addresses many of the current uncertainties regarding the AOP framework and its application and is intended to foster greater consistency in AOP development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Non-zinc mediated inhibition of carbonic anhydrases: coumarins are a new class of suicide inhibitors.

            The X-ray crystal structure of the adduct between the zinc metalloenzyme carbonic anhydrase II (CA, EC 4.2.1.1) with the recently discovered natural product coumarin derivative 6-(1S-hydroxy-3-methylbutyl)-7-methoxy-2H-chromen-2-one showed the coumarin hydrolysis product, a cis-2-hydroxy-cinnamic acid derivative, and not the parent coumarin, bound within the enzyme active site. The bound inhibitor exhibits an extended, two-arm conformation that effectively plugs the entrance to the enzyme active site with no interactions with the catalytically crucial zinc ion. The inhibitor is sandwiched between Phe131, with which it makes an edge-to-face stacking, and Asn67/Glu238sym, with which it makes several polar and hydrogen bonding interactions. This unusual binding mode, with no interactions between the inhibitor molecule and the active site metal ion is previously unobserved for this enzyme class and presents a new opportunity for future drug design campaigns to target a mode of inhibition that differs substantially from classical inhibitors such as the clinically used sulfonamides and sulfamates. Several structurally simple coumarin scaffolds were also shown to inhibit all 13 catalytically active mammalian CA isoforms, with inhibition constants ranging from nanomolar to millimolar. The inhibition is time dependent, with maximum inhibition being observed after 6 h.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency

              The U.S. Environmental Protection Agency (EPA) is faced with the challenge of efficiently and credibly evaluating chemical safety often with limited or no available toxicity data. The expanding number of chemicals found in commerce and the environment, coupled with time and resource requirements for traditional toxicity testing and exposure characterization, continue to underscore the need for new approaches. In 2005, EPA charted a new course to address this challenge by embracing computational toxicology (CompTox) and investing in the technologies and capabilities to push the field forward. The return on this investment has been demonstrated through results and applications across a range of human and environmental health problems, as well as initial application to regulatory decision-making within programs such as the EPA’s Endocrine Disruptor Screening Program. The CompTox initiative at EPA is more than a decade old. This manuscript presents a blueprint to guide the strategic and operational direction over the next 5 years. The primary goal is to obtain broader acceptance of the CompTox approaches for application to higher tier regulatory decisions, such as chemical assessments. To achieve this goal, the blueprint expands and refines the use of high-throughput and computational modeling approaches to transform the components in chemical risk assessment, while systematically addressing key challenges that have hindered progress. In addition, the blueprint outlines additional investments in cross-cutting efforts to characterize uncertainty and variability, develop software and information technology tools, provide outreach and training, and establish scientific confidence for application to different public health and environmental regulatory decisions.
                Bookmark

                Author and article information

                Journal
                Toxicol Sci
                Toxicol. Sci
                toxsci
                Toxicological Sciences
                Oxford University Press
                1096-6080
                1096-0929
                July 2020
                10 April 2020
                10 April 2020
                : 176
                : 1
                : 236-252
                Affiliations
                Unilever Safety and Environmental Assurance Centre, Colworth Science Park , Sharnbrook, Bedfordshire MK44 1LQ, UK
                Author notes
                To whom correspondence should be addressed. Fax: +44(0)1234 264 744. E-mail: maria.baltazar@ 123456unilever.com .
                Author information
                http://orcid.org/0000-0002-7551-8141
                Article
                kfaa048
                10.1093/toxsci/kfaa048
                7357171
                32275751
                2b2a0d0e-5725-44f9-844d-fa966b212aeb
                © The Author(s) 2020. Published by Oxford University Press on behalf of the Society of Toxicology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Page count
                Pages: 17
                Funding
                Funded by: Unilever, DOI 10.13039/100007190;
                Categories
                Regulatory Science, Risk Assessment, and Decision Making

                Pharmacology & Pharmaceutical medicine
                next-generation risk assessment,new approach methodologies,exposure science

                Comments

                Comment on this article