57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spotlight on Antimicrobial Metabolites from the Marine Bacteria Pseudoalteromonas: Chemodiversity and Ecological Significance

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review is dedicated to the antimicrobial metabolite-producing Pseudoalteromonas strains. The genus Pseudoalteromonas hosts 41 species, among which 16 are antimicrobial metabolite producers. To date, a total of 69 antimicrobial compounds belonging to 18 different families have been documented. They are classified into alkaloids, polyketides, and peptides. Finally as Pseudoalteromonas strains are frequently associated with macroorganisms, we can discuss the ecological significance of antimicrobial Pseudoalteromonas as part of the resident microbiota.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides

          Identifying genes encoding bacteriocins and ribosomally synthesized and posttranslationally modified peptides (RiPPs) can be a challenging task. Especially those peptides that do not have strong homology to previously identified peptides can easily be overlooked. Extensive use of BAGEL2 and user feedback has led us to develop BAGEL3. BAGEL3 features genome mining of prokaryotes, which is largely independent of open reading frame (ORF) predictions and has been extended to cover more (novel) classes of posttranslationally modified peptides. BAGEL3 uses an identification approach that combines direct mining for the gene and indirect mining via context genes. Especially for heavily modified peptides like lanthipeptides, sactipeptides, glycocins and others, this genetic context harbors valuable information that is used for mining purposes. The bacteriocin and context protein databases have been updated and it is now easy for users to submit novel bacteriocins or RiPPs. The output has been simplified to allow user-friendly analysis of the results, in particular for large (meta-genomic) datasets. The genetic context of identified candidate genes is fully annotated. As input, BAGEL3 uses FASTA DNA sequences or folders containing multiple FASTA formatted files. BAGEL3 is freely accessible at http://bagel.molgenrug.nl.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity

            The products of many bacterial non-ribosomal peptide synthetases (NRPS) are highly important secondary metabolites, including vancomycin and other antibiotics. The ability to predict substrate specificity of newly detected NRPS Adenylation (A-) domains by genome sequencing efforts is of great importance to identify and annotate new gene clusters that produce secondary metabolites. Prediction of A-domain specificity based on the sequence alone can be achieved through sequence signatures or, more accurately, through machine learning methods. We present an improved predictor, based on previous work (NRPSpredictor), that predicts A-domain specificity using Support Vector Machines on four hierarchical levels, ranging from gross physicochemical properties of an A-domain’s substrates down to single amino acid substrates. The three more general levels are predicted with an F-measure better than 0.89 and the most detailed level with an average F-measure of 0.80. We also modeled the applicability domain of our predictor to estimate for new A-domains whether they lie in the applicability domain. Finally, since there are also NRPS that play an important role in natural products chemistry of fungi, such as peptaibols and cephalosporins, we added a predictor for fungal A-domains, which predicts gross physicochemical properties with an F-measure of 0.84. The service is available at http://nrps.informatik.uni-tuebingen.de/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Microbes Drive Evolution of Animals and Plants: the Hologenome Concept

              ABSTRACT The hologenome concept of evolution postulates that the holobiont (host plus symbionts) with its hologenome (host genome plus microbiome) is a level of selection in evolution. Multicellular organisms can no longer be considered individuals by the classical definitions of the term. Every natural animal and plant is a holobiont consisting of the host and diverse symbiotic microbes and viruses. Microbial symbionts can be transmitted from parent to offspring by a variety of methods, including via cytoplasmic inheritance, coprophagy, direct contact during and after birth, and the environment. A large number of studies have demonstrated that these symbionts contribute to the anatomy, physiology, development, innate and adaptive immunity, and behavior and finally also to genetic variation and to the origin and evolution of species. Acquisition of microbes and microbial genes is a powerful mechanism for driving the evolution of complexity. Evolution proceeds both via cooperation and competition, working in parallel.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Mar Drugs
                Mar Drugs
                marinedrugs
                Marine Drugs
                MDPI
                1660-3397
                08 July 2016
                July 2016
                : 14
                : 7
                : 129
                Affiliations
                Laboratoire Universitaire de Biodiversité et d’Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France; clement.offret@ 123456univ-brest.fr (C.O.); florie.desriac@ 123456polytech-lille.fr (F.D.); patrick.lechevalier@ 123456univ-brest.fr (P.L.C.); jerome.mounier@ 123456univ-brest.fr (J.M.); camille.jegou@ 123456univ-brest.fr (C.J.)
                Author notes
                [* ]Correspondence: yannick.fleury@ 123456univ-brest.fr ; Tel.: +33-298-641-935
                [†]

                Present address: University of Lille, INRA, ISA; University of Artois; University of Littoral Côte d’Opale; Institute of Charles Viollette, EA 7394 Lille, France.

                Article
                marinedrugs-14-00129
                10.3390/md14070129
                4962019
                27399731
                2b1ada48-b7a4-4ee6-bcfd-9c9949690c19
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 May 2016
                : 29 June 2016
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                pseudoalteromonas,antimicrobial metabolites,alkaloid,polyketide,non ribosomal peptide,genome mining,marine host-associated microbiota,probiotic

                Comments

                Comment on this article