7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Multi-residue method for the determination of 57 Persistent Organic Pollutants in human milk and colostrum using a QuEChERS-based extraction procedure

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Endocrine disruptors: from endocrine to metabolic disruption.

          Synthetic chemicals currently used in a variety of industrial and agricultural applications are leading to widespread contamination of the environment. Even though the intended uses of pesticides, plasticizers, antimicrobials, and flame retardants are beneficial, effects on human health are a global concern. These so-called endocrine-disrupting chemicals (EDCs) can disrupt hormonal balance and result in developmental and reproductive abnormalities. New in vitro, in vivo, and epidemiological studies link human EDC exposure with obesity, metabolic syndrome, and type 2 diabetes. Here we review the main chemical compounds that may contribute to metabolic disruption. We then present their demonstrated or suggested mechanisms of action with respect to nuclear receptor signaling. Finally, we discuss the difficulties of fairly assessing the risks linked to EDC exposure, including developmental exposure, problems of high- and low-dose exposure, and the complexity of current chemical environments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables.

            This article describes the comparison of different versions of an easy, rapid and low-cost sample preparation approach for the determination of pesticide residues in fruits and vegetables by concurrent use of gas and liquid chromatography (GC and LC) coupled to mass spectrometry (MS) for detection. The sample preparation approach is known as QuEChERS, which stands for "quick, easy, cheap, effective, rugged and safe". The three compared versions were based on the original unbuffered method, which was first published in 2003, and two interlaboratory validated versions: AOAC Official Method 2007.01, which uses acetate buffering, and European Committee for Standardization (CEN) Standard Method EN 15662, which calls for citrate buffering. LC-MS/MS and GC-MS analyses using each method were tested from 50 to 1000ng/g in apple-blueberry sauce, peas and limes spiked with 32 representative pesticides. As expected, the results were excellent (overall average of 98% recoveries with 10% RSD) using all 3 versions, except the unbuffered method gave somewhat lower recoveries for the few pH-dependent pesticides. The different methods worked equally well for all matrices tested with equivalent amounts of matrix co-extractives measured, matrix effects on quantification and chemical noise from matrix in the chromatographic backgrounds. The acetate-buffered version gave higher and more consistent recoveries for pymetrozine than the other versions in all 3 matrices and for thiabendazole in limes. None of the versions consistently worked well for chlorothalonil, folpet or tolylfluanid in peas, but the acetate-buffered method gave better results for screening of those pesticides. Also, due to the recent shortage in acetonitrile (MeCN), ethyl acetate (EtOAc) was evaluated as a substitute solvent in the acetate-buffered QuEChERS version, but it generally led to less clean extracts and lower recoveries of pymetrozine, thiabendazole, acephate, methamidophos, omethoate and dimethoate. In summary, the acetate-buffered version of QuEChERS using MeCN exhibited advantages compared to the other tested methods in the study. Published by Elsevier B.V.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Non-invasive matrices in human biomonitoring: a review.

              Humans and other living organisms are exposed to a variety of chemical pollutants that are released into the environment as a consequence of anthropogenic activities. Environmental pollutants are incorporated into the organism by different routes and can then be stored and distributed in different tissues, which leads to an internal concentration that can induce different alterations, adverse effects and/or diseases. Control measures should be taken to avoid these effects and human biomonitoring is a very useful tool that can contribute to this aim. Human biomonitoring uses different matrices to measure the target chemicals depending on the chemical, the amount of matrix necessary for the analysis and the detection limit (LOD) of the analytical technique. Blood is the ideal matrix for most chemicals due to its contact with the whole organism and its equilibrium with organs and tissues where chemicals are stored. However, it has an important disadvantage of being an invasive matrix. The development of new methodology and modern analytical techniques has allowed the use of other matrices that are less or non-invasive, such as saliva, urine, meconium, nails, hair, and semen or breast milk. The presence of a chemical in these matrices reflects an exposure, but correlations between levels in non-invasive matrices and blood must be established to ensure that these levels are related to the total body burden. The development of new biomarkers that are measurable in these matrices will improve non-invasive biomonitoring. This paper reviews studies that measure Cd, Pb, Hg, polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides and phthalates in non-invasive matrices, the most used techniques for measurements and what alternative techniques are available.
                Bookmark

                Author and article information

                Journal
                Analytical and Bioanalytical Chemistry
                Anal Bioanal Chem
                Springer Nature
                1618-2642
                1618-2650
                November 2013
                October 27 2013
                : 405
                : 29
                : 9523-9536
                Article
                10.1007/s00216-013-7377-0
                24162817
                2ad6f48f-c54b-4542-b470-48c828870da1
                © 2013
                History

                Comments

                Comment on this article