5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sulfonylurea antidiabetics are associated with lower risk of out‐of‐hospital cardiac arrest: Real‐world data from a population‐based study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims

          Out‐of‐hospital cardiac arrest (OHCA) mostly results from ventricular tachycardia/ventricular fibrillation (VT/VF), often triggered by acute myocardial infarction (AMI). Sulfonylurea (SU) antidiabetics can block myocardial ATP‐regulated K + channels (K ATP channels), activated during AMI, thereby modulating action potential duration (APD). We studied whether SU drugs impact on OHCA risk, and whether these effects are related to APD changes.

          Methods

          We conducted a population‐based case–control study in 219 VT/VF‐documented OHCA cases with diabetes and 697 non‐OHCA controls with diabetes. We studied the association of SU drugs (alone or in combination with metformin) with OHCA risk compared to metformin monotherapy, and of individual SU drugs compared to glimepiride, using multivariable logistic regression analysis. We studied the effects of these drugs on APD during simulated ischaemia using patch‐clamp studies in human induced pluripotent stem cell‐derived cardiomyocytes.

          Results

          Compared to metformin, use of SU drugs alone or in combination with metformin was associated with reduced OHCA risk (OR SUdrugs‐alone 0.6 [95% CI 0.4–0.9], OR SUdrugs + metformin 0.6 [95% CI 0.4–0.9]). We found no differences in OHCA risk between SU drug users who suffered OHCA inside or outside the context of AMI. Reduction of OHCA risk compared to glimepiride was found with gliclazide (OR adj 0.5 [95% CI 0.3–0.9]), but not glibenclamide (OR adj 1.3 [95% CI 0.6–2.7]); for tolbutamide, the association with reduced OHCA risk just failed to reach statistical significance (OR adj 0.6 [95% CI 0.3–1.002]). Glibenclamide attenuated simulated ischaemia‐induced APD shortening, while the other SU drugs had no effect.

          Conclusions

          SU drugs were associated with reduced OHCA risk compared to metformin monotherapy, with gliclazide having a lower risk than glimepiride. The differential effects of SU drugs are not explained by differential effects on APD.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of plaque formation and rupture.

          Atherosclerosis causes clinical disease through luminal narrowing or by precipitating thrombi that obstruct blood flow to the heart (coronary heart disease), brain (ischemic stroke), or lower extremities (peripheral vascular disease). The most common of these manifestations is coronary heart disease, including stable angina pectoris and the acute coronary syndromes. Atherosclerosis is a lipoprotein-driven disease that leads to plaque formation at specific sites of the arterial tree through intimal inflammation, necrosis, fibrosis, and calcification. After decades of indolent progression, such plaques may suddenly cause life-threatening coronary thrombosis presenting as an acute coronary syndrome. Most often, the culprit morphology is plaque rupture with exposure of highly thrombogenic, red cell-rich necrotic core material. The permissive structural requirement for this to occur is an extremely thin fibrous cap, and thus, ruptures occur mainly among lesions defined as thin-cap fibroatheromas. Also common are thrombi forming on lesions without rupture (plaque erosion), most often on pathological intimal thickening or fibroatheromas. However, the mechanisms involved in plaque erosion remain largely unknown, although coronary spasm is suspected. The calcified nodule has been suggested as a rare cause of coronary thrombosis in highly calcified and tortious arteries in older individuals. To characterize the severity and prognosis of plaques, several terms are used. Plaque burden denotes the extent of disease, whereas plaque activity is an ambiguous term, which may refer to one of several processes that characterize progression. Plaque vulnerability describes the short-term risk of precipitating symptomatic thrombosis. In this review, we discuss mechanisms of atherosclerotic plaque initiation and progression; how plaques suddenly precipitate life-threatening thrombi; and the concepts of plaque burden, activity, and vulnerability. © 2014 American Heart Association, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of Linagliptin vs Glimepiride on Major Adverse Cardiovascular Outcomes in Patients With Type 2 Diabetes

            Type 2 diabetes is associated with increased cardiovascular risk. In placebo-controlled cardiovascular safety trials, the dipeptidyl peptidase-4 inhibitor linagliptin demonstrated noninferiority, but it has not been tested against an active comparator.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oral antidiabetic agents: current role in type 2 diabetes mellitus.

              Type 2 diabetes mellitus is a progressive and complex disorder that is difficult to treat effectively in the long term. The majority of patients are overweight or obese at diagnosis and will be unable to achieve or sustain near normoglycaemia without oral antidiabetic agents; a sizeable proportion of patients will eventually require insulin therapy to maintain long-term glycaemic control, either as monotherapy or in conjunction with oral antidiabetic therapy. The frequent need for escalating therapy is held to reflect progressive loss of islet beta-cell function, usually in the presence of obesity-related insulin resistance. Today's clinicians are presented with an extensive range of oral antidiabetic drugs for type 2 diabetes. The main classes are heterogeneous in their modes of action, safety profiles and tolerability. These main classes include agents that stimulate insulin secretion (sulphonylureas and rapid-acting secretagogues), reduce hepatic glucose production (biguanides), delay digestion and absorption of intestinal carbohydrate (alpha-glucosidase inhibitors) or improve insulin action (thiazolidinediones). The UKPDS (United Kingdom Prospective Diabetes Study) demonstrated the benefits of intensified glycaemic control on microvascular complications in newly diagnosed patients with type 2 diabetes. However, the picture was less clearcut with regard to macrovascular disease, with neither sulphonylureas nor insulin significantly reducing cardiovascular events. The impact of oral antidiabetic agents on atherosclerosis--beyond expected effects on glycaemic control--is an increasingly important consideration. In the UKPDS, overweight and obese patients randomised to initial monotherapy with metformin experienced significant reductions in myocardial infarction and diabetes-related deaths. Metformin does not promote weight gain and has beneficial effects on several cardiovascular risk factors. Accordingly, metformin is widely regarded as the drug of choice for most patients with type 2 diabetes. Concern about cardiovascular safety of sulphonylureas has largely dissipated with generally reassuring results from clinical trials, including the UKPDS. Encouragingly, the recent Steno-2 Study showed that intensive target-driven, multifactorial approach to management, based around a sulphonylurea, reduced the risk of both micro- and macrovascular complications in high-risk patients. Theoretical advantages of selectively targeting postprandial hyperglycaemia require confirmation in clinical trials of drugs with preferential effects on this facet of hyperglycaemia are currently in progress. The insulin-sensitising thiazolidinedione class of antidiabetic agents has potentially advantageous effects on multiple components of the metabolic syndrome; the results of clinical trials with cardiovascular endpoints are awaited. The selection of initial monotherapy is based on a clinical and biochemical assessment of the patient, safety considerations being paramount. In some circumstances, for example pregnancy or severe hepatic or renal impairment, insulin may be the treatment of choice when nonpharmacological measures prove inadequate. Insulin is also required for metabolic decompensation, that is, incipient or actual diabetic ketoacidosis, or non-ketotic hyperosmolar hyperglycaemia. Certain comorbidities, for example presentation with myocardial infarction during other acute intercurrent illness, may make insulin the best option. Oral antidiabetic agents should be initiated at a low dose and titrated up according to glycaemic response, as judged by measurement of glycosylated haemoglobin (HbA1c) concentration, supplemented in some patients by self monitoring of capillary blood glucose. The average glucose-lowering effect of the major classes of oral antidiabetic agents is broadly similar (averaging a 1-2% reduction in HbA1c), alpha-glucosidase inhibitors being rather less effective. Tailoring the treatment to the individual patient is an important principle. Doses are gradually titrated up according to response. However, the maximal glucose-lowering action for sulphonylureas is usually attained at appreciably lower doses (approximately 50%) than the manufacturers' recommended daily maximum. Combinations of certain agents, for example a secretagogue plus a biguanide or a thiazolidinedione, are logical and widely used, and combination preparations are now available in some countries. While the benefits of metformin added to a sulphonylurea were initially less favourable in the UKPDS, longer-term data have allayed concern. When considering long-term therapy, issues such as tolerability and convenience are important additional considerations. Neither sulphonylureas nor biguanides are able to appreciably alter the rate of progression of hyperglycaemia in patients with type 2 diabetes. Preliminary data suggesting that thiazolidinediones may provide better long-term glycaemic stability are currently being tested in clinical trials; current evidence, while encouraging, is not conclusive. Delayed progression from glucose intolerance to type 2 diabetes in high-risk individuals with glucose intolerance has been demonstrated with troglitazone, metformin and acarbose. However, intensive lifestyle intervention can be more effective than drug therapy, at least in the setting of interventional clinical trials. No antidiabetic drugs are presently licensed for use in prediabetic individuals.
                Bookmark

                Author and article information

                Contributors
                h.l.tan@amc.uva.nl
                Journal
                Br J Clin Pharmacol
                Br J Clin Pharmacol
                10.1111/(ISSN)1365-2125
                BCP
                British Journal of Clinical Pharmacology
                John Wiley and Sons Inc. (Hoboken )
                0306-5251
                1365-2125
                25 April 2021
                September 2021
                25 April 2021
                : 87
                : 9 , Themed Issue: Best practice for antiviral therapeutic development and use in a pandemic: COVID 19 and beyond ( doiID: 10.1111/bcp.v87.9 )
                : 3588-3598
                Affiliations
                [ 1 ] Department of Cardiology, Heart Center, Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
                [ 2 ] Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences Utrecht University Utrecht The Netherlands
                [ 3 ] Department of Cardiology Copenhagen University Hospital Herlev and Gentofte Hellerup Denmark
                [ 4 ] Department of Medical Biology, Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
                [ 5 ] Netherlands Heart Institute Utrecht The Netherlands
                Author notes
                [*] [* ] Correspondence

                Hanno L. Tan, MD, PhD, Heart Center, Department of Cardiology Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.

                Email: h.l.tan@ 123456amc.uva.nl

                Author information
                https://orcid.org/0000-0002-7452-0477
                https://orcid.org/0000-0002-9485-8037
                https://orcid.org/0000-0002-7905-5818
                Article
                BCP14774
                10.1111/bcp.14774
                8453495
                33896015
                2acae326-1350-4be0-b60f-04df77f91357
                © 2021 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 13 January 2021
                : 21 August 2020
                : 02 February 2021
                Page count
                Figures: 2, Tables: 6, Pages: 11, Words: 8002
                Funding
                Funded by: COST Action PARQ
                Award ID: CA19137
                Funded by: European Union's Horizon 2020
                Award ID: 733381
                Funded by: Netherlands CardioVascular Research Initiative
                Award ID: CVON‐2017‐15 RESCUED
                Award ID: CVON‐2018‐30 Predict‐2
                Funded by: Physio‐Control Inc., part of Stryker
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                September 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.0.7 mode:remove_FC converted:21.09.2021

                Pharmacology & Pharmaceutical medicine
                escape‐net,katp channelssulfonylurea,sudden cardiac arrest

                Comments

                Comment on this article