13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome Shuffling of Mangrove Endophytic Aspergillus luchuensis MERV10 for Improving the Cholesterol-Lowering Agent Lovastatin under Solid State Fermentation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the screening of marine mangrove derived fungi for lovastatin productivity, endophytic Aspergillus luchuensis MERV10 exhibited the highest lovastatin productivity (9.5 mg/gds) in solid state fermentation (SSF) using rice bran. Aspergillus luchuensis MERV10 was used as the parental strain in which to induce genetic variabilities after application of different mixtures as well as doses of mutagens followed by three successive rounds of genome shuffling. Four potent mutants, UN6, UN28, NE11, and NE23, with lovastatin productivity equal to 2.0-, 2.11-, 1.95-, and 2.11-fold higher than the parental strain, respectively, were applied for three rounds of genome shuffling as the initial mutants. Four hereditarily stable recombinants (F3/3, F3/7, F3/9, and F3/13) were obtained with lovastatin productivity equal to 50.8, 57.0, 49.7, and 51.0 mg/gds, respectively. Recombinant strain F3/7 yielded 57.0 mg/gds of lovastatin, which is 6-fold and 2.85-fold higher, respectively, than the initial parental strain and the highest mutants UN28 and NE23. It was therefore selected for the optimization of lovastatin production through improvement of SSF parameters. Lovastatin productivity was increased 32-fold through strain improvement methods, including mutations and three successive rounds of genome shuffling followed by optimizing SSF factors.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found

          Targeting tumor cell metabolism with statins.

          The mevalonate pathway is a core biochemical process, crucial for the generation of cholesterol and other key metabolic end products. The rate-limiting enzyme of the mevalonate pathway, hydroxymethylglutaryl coenzyme A reductase (HMGCR), is safely and effectively targeted by the statin family of inhibitors to treat hypercholesterolemia. The anticancer activity of statins has also been widely reported, yet the tumor-selective mechanisms that mediate these antiproliferative effects remain largely unclear. The importance of altered metabolism in the context of tumorigenesis has received renewed attention as metabolic changes entwined with the molecular hallmarks of cancer have been elucidated. Although several metabolic pathways have been linked to cancer progression and etiology, it was only recently that HMGCR and the mevalonate pathway were also shown to have a distinct role in cellular transformation. In this review, we chart the historical progression of statins from cholesterol-lowering blockbusters to anticancer agents with imminent potential, and further discuss an emerging role for HMGCR and the mevalonate pathway in the metabolic reprogramming of cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs.

            Hypercholesterolemia is considered an important risk factor in coronary artery disease. Thus the possibility of controlling de novo synthesis of endogenous cholesterol, which is nearly two-thirds of total body cholesterol, represents an effective way of lowering plasma cholesterol levels. Statins, fungal secondary metabolites, selectively inhibit hydroxymethyl glutaryl-coenzyme A (HMG-CoA) reductase, the first enzyme in cholesterol biosynthesis. The mechanism involved in controlling plasma cholesterol levels is the reversible inhibition of HMG-CoA reductase by statins, related to the structural similarity of the acid form of the statins to HMG-CoA, the natural substrate of the enzymatic reaction. Currently there are five statins in clinical use. Lovastatin and pravastatin (mevastatin derived) are natural statins of fungal origin, while symvastatin is a semi-synthetic lovastatin derivative. Atorvastatin and fluvastatin are fully synthetic statins, derived from mevalonate and pyridine, respectively. In addition to the principal natural statins, several related compounds, monacolins and dihydromonacolins, isolated fungal intermediate metabolites, have also been characterized. All natural statins possess a common polyketide portion, a hydroxy-hexahydro naphthalene ring system, to which different side chains are linked. The biosynthetic pathway involved in statin production, starting from acetate units linked to each other in head-to-tail fashion to form polyketide chains, has been elucidated by both early biogenetic investigations and recent advances in gene studies. Natural statins can be obtained from different genera and species of filamentous fungi. Lovastatin is mainly produced by Aspergillus terreus strains, and mevastatin by Penicillium citrinum. Pravastatin can be obtained by the biotransformation of mevastatin by Streptomyces carbophilus and simvastatin by a semi-synthetic process, involving the chemical modification of the lovastatin side chain. The hypocholesterolemic effect of statins lies in the reduction of the very low-density lipoproteins (VLDL) and LDL involved in the translocation of cholesterol, and in the increase in the high-density lipoproteins (HDL), with a subsequent reduction of the LDL- to HDL-cholesterol ratio, the best predictor of atherogenic risk. The use of statins can lead to a reduction in coronary events related to hypercholesterolemia, but the relationship between benefit and risk, and any possible interaction with other drugs, must be taken into account.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Statins and cancer: current and future prospects.

              Maja Osmak (2012)
              Statins are inhibitors of 3-hydroxy-methylglutaryl (HMG) CoA reductase. They exhibit effects beyond cholesterol reduction, including anticancer activity. This review presents the effects of statins in vitro and their possible molecular anticancer mechanisms and critically discusses the data regarding the role of statins in cancer prevention. Finally, this review focuses on the use of statins combined with other chemotherapeutics to increase the effectiveness of cancer treatments. Despite rare and inconclusive clinical data, the preclinical results strongly suggest that such combined treatment could be a promising new strategy for the treatment of certain tumor types. Copyright © 2012. Published by Elsevier Ireland Ltd.
                Bookmark

                Author and article information

                Journal
                Mycobiology
                Mycobiology
                MB
                Mycobiology
                The Korean Society of Mycology
                1229-8093
                2092-9323
                September 2016
                30 September 2016
                : 44
                : 3
                : 171-179
                Affiliations
                [1 ]Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
                [2 ]Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza 12622, Egypt.
                [3 ]Department of Biological Sciences, Faculty of Sciences, Jeddah University, Jeddah 80203, Saudi Arabia.
                [4 ]Genetics and Cytology Department, National Research Centre, Dokki, Giza 12622, Egypt.
                Author notes
                Corresponding author: ahmed_bondkly@ 123456yahoo.com
                Article
                10.5941/MYCO.2016.44.3.171
                5078130
                27790068
                2a9c8d4c-d595-4550-955f-1b05585a879b
                © The Korean Society of Mycology

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 June 2016
                : 17 June 2016
                : 25 June 2016
                Categories
                Research Article

                Plant science & Botany
                aspergillus luchuensis,genome shuffling,lovastatin,mutation,solid state fermentation

                Comments

                Comment on this article