Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Siliceno, una nueva mirada al silicio en dos dimensiones

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resumen: El siliceno, un material bidimensional de estructura hexagonal similar al grafeno, ha estado recientemente en la mira de la comunidad científica de las nanociencias debido a que podría extender por mucho las posibles aplicaciones del silicio, elemento usado por excelencia desde hace más de medio siglo en la industria electrónica. Esta novedosa estructura bidimensional promete ofrecernos novedosas aplicaciones en la siguiente generación de componentes electrónicos, en la que predominarán dispositivos flexibles que revolucionarán la tecnología actual. Al igual que en el caso del grafeno, la cantidad de investigaciones teóricas acerca de esta prometedora estructura, se ha visto incrementada hasta abordar incluso el tema de la funcionalización de su superficie mediante la incorporación de diferentes elementos, para incluso sugerir aplicaciones en el ámbito de los sensores. Actualmente, diversos grupos de científicos experimentalistas se encuentran sintetizando esta estructura mediante el empleo de diferentes técnicas. Los resultados de ambos experimentos teóricos y experimentales han propiciado una profusa cantidad de publicaciones, que han abierto nuevas líneas de investigación en torno a esta novedosa nanoestructura.

          Translated abstract

          Abstract: Silicene, a hexagonal two-dimensional material similar to graphene, has recently become the topic of active research in the field of nanoscience. Silicene could extend the possible applications of silicon, which in the last half century has been the most important material used by the electronics industry. This novel two-dimensional material promises to offer new applications in the next generation of electronic components, in which flexible devices will revolutionize the current technology. As in the case of graphene, the amount of theoretical investigations on this promising structure has increased very quickly. It is now a topic of interest, the study of the functionalization of the surface by adding different elements that could lead to applications in the field of sensors. Currently, several experimental groups are trying to synthesize this structure by employing various techniques. The results of both theoretical calculations and experimental methods have led to a profusion of publications, which have opened new lines of research for this novel nanostructure.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Two-dimensional gas of massless Dirac fermions in graphene.

          Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrödinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two- and one-dimensional honeycomb structures of silicon and germanium.

            First-principles calculations of structure optimization, phonon modes, and finite temperature molecular dynamics predict that silicon and germanium can have stable, two-dimensional, low-buckled, honeycomb structures. Similar to graphene, these puckered structures are ambipolar and their charge carriers can behave like a massless Dirac fermion due to their pi and pi(*) bands which are crossed linearly at the Fermi level. In addition to these fundamental properties, bare and hydrogen passivated nanoribbons of Si and Ge show remarkable electronic and magnetic properties, which are size and orientation dependent. These properties offer interesting alternatives for the engineering of diverse nanodevices.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Theoretical possibility of stage corrugation in Si and Ge analogs of graphite

                Bookmark

                Author and article information

                Journal
                mn
                Mundo nano. Revista interdisciplinaria en nanociencias y nanotecnología
                Mundo nano
                Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas y Tecnología (Ciudad de México, Ciudad de México, Mexico )
                2007-5979
                2448-5691
                June 2013
                : 6
                : 10
                : 35-44
                Affiliations
                [2] Ensenada orgnameUniversidad Nacional Autónoma de México orgdiv1Centro de Nanociencias y Nanotecnología Mexico takeuchi@ 123456cnyn.unam.mx
                [1] Ensenada Baja California orgnameCentro de Investigación Científica y de Educación Superior de Ensenada Mexico rubio.pereda@ 123456gmail.com
                Article
                S2448-56912013000100035 S2448-5691(13)00601000035
                10.22201/ceiich.24485691e.2013.10.50963
                2a7a64c2-0b4e-4ccc-9658-5d8fd0303d93

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 13, Pages: 10
                Product

                SciELO Mexico

                Categories
                Artículos de investigación

                nanoestructura,Silicene,hexagonal structure,nanostructure,Siliceno,estructura hexagonal

                Comments

                Comment on this article