39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Comprehensive Genetic Characterization of Bacterial Motility

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have developed a powerful experimental framework that combines competitive selection and microarray-based genetic footprinting to comprehensively reveal the genetic basis of bacterial behaviors. Application of this method to Escherichia coli motility identifies 95% of the known flagellar and chemotaxis genes, and reveals three dozen novel loci that, to varying degrees and through diverse mechanisms, affect motility. To probe the network context in which these genes function, we developed a method that uncovers genome-wide epistatic interactions through comprehensive analyses of double-mutant phenotypes. This allows us to place the novel genes within the context of signaling and regulatory networks, including the Rcs phosphorelay pathway and the cyclic di-GMP second-messenger system. This unifying framework enables sensitive and comprehensive genetic characterization of complex behaviors across the microbial biosphere.

          Author Summary

          Bacteria thrive in a limitless range of extreme environments, accompanied by exotic metabolisms and sophisticated behaviors. However, our modern molecular understanding of bacteria comes from studies of a limited range of phenotypes in a handful of model organisms such as E. coli and Bacillus subtilis. With the availability of thousands of sequenced bacterial genomes, there is now an urgent need for methods that rapidly and comprehensively reveal the genetic basis of phenotypes across the microbial biosphere. To this end, we have developed a genome-wide experimental framework that quantifies the degree to which every gene in the genome contributes to a phenotype of interest, and reveals the organization of genes within regulatory networks and signaling pathways. We show here that the application of this methodology to E. coli swimming and surface motility reveals essentially all the previously known components of flagellar-mediated chemotaxis on the time scale of weeks. Remarkably, we also identify three dozen additional novel loci that operate through diverse mechanisms to affect a behavior that was assumed to be completely characterized. The speed, ease, and broad applicability of this framework should greatly accelerate the global analysis of a wide range of uncharacterized bacterial behaviors.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Genes required for mycobacterial growth defined by high density mutagenesis.

          Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization (TraSH) to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth. These genes include those that can be assigned to essential pathways as well as many of unknown function. The genes important for the growth of M. tuberculosis are largely conserved in the degenerate genome of the leprosy bacillus, Mycobacterium leprae, indicating that non-essential functions have been selectively lost since this bacterium diverged from other mycobacteria. In contrast, a surprisingly high proportion of these genes lack identifiable orthologues in other bacteria, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative monitoring of gene expression patterns with a complementary DNA microarray.

            A high-capacity system was developed to monitor the expression of many genes in parallel. Microarrays prepared by high-speed robotic printing of complementary DNAs on glass were used for quantitative expression measurements of the corresponding genes. Because of the small format and high density of the arrays, hybridization volumes of 2 microliters could be used that enabled detection of rare transcripts in probe mixtures derived from 2 micrograms of total cellular messenger RNA. Differential expression measurements of 45 Arabidopsis genes were made by means of simultaneous, two-color fluorescence hybridization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Making sense of it all: bacterial chemotaxis.

              Bacteria must be able to respond to a changing environment, and one way to respond is to move. The transduction of sensory signals alters the concentration of small phosphorylated response regulators that bind to the rotary flagellar motor and cause switching. This simple pathway has provided a paradigm for sensory systems in general. However, the increasing number of sequenced bacterial genomes shows that although the central sensory mechanism seems to be common to all bacteria, there is added complexity in a wide range of species.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                pgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                September 2007
                14 September 2007
                25 July 2007
                : 3
                : 9
                : e154
                Affiliations
                [1 ] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
                [2 ] Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
                University of Toronto, Canada
                Author notes
                * To whom correspondence should be addressed. E-mail: tavazoie@ 123456molbio.princeton.edu
                Article
                07-PLGE-RA-0400R2 plge-03-09-08
                10.1371/journal.pgen.0030154
                1976333
                17941710
                2a67c02b-2322-449b-a3a1-5096bff75dae
                Copyright: © 2007 Girgis et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 June 2007
                : 25 July 2007
                Page count
                Pages: 17
                Categories
                Research Article
                Genetics and Genomics
                Microbiology
                Eubacteria
                Custom metadata
                Girgis HS, Liu Y, Ryu WS, Tavazoie S (2007) A comprehensive genetic characterization of bacterial motility. PLoS Genet 3(9): e154. doi: 10.1371/journal.pgen.0030154

                Genetics
                Genetics

                Comments

                Comment on this article