2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Correlation analysis of disulfidptosis-related gene signatures with clinical prognosis and immunotherapy response in sarcoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Disulfidptosis, a newly discovered type of programmed cell death, could be a mechanism of cell death controlled by SLC7A11. This could be closely associated with tumor development and advancement. Nevertheless, the biological mechanism behind disulfidptosis-related genes (DRGs) in sarcoma (SARC) is uncertain. This study identified three valuable genes ( SLC7A11, RPN1, GYS1) associated with disulfidptosis in sarcoma (SARC) and developed a prognostic model. The multiple databases and RT-qPCR data confirmed the upregulated expression of prognostic DRGs in SARC. The TCGA internal and ICGC external validation cohorts were utilized to validate the predictive model capacity. Our analysis of DRG riskscores revealed that the low-risk group exhibited a more favorable prognosis than the high-risk group. Furthermore, we observed a significant association between DRG riskscores and different clinical features, immune cell infiltration, immune therapeutic sensitivity, drug sensitivity, and RNA modification regulators. In addition, two external independent immunetherapy datasets and clinical tissue samples were collected, validating the value of the DRGs risk model in predicting immunotherapy response. Finally, the SLC7A11/hsa-miR-29c-3p/LINC00511, and RPN1/hsa-miR-143-3p/LINC00511 regulatory axes were constructed. This study provided DRG riskscore signatures to predict prognosis and response to immunotherapy in SARC, guiding personalized treatment decisions.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          clusterProfiler: an R package for comparing biological themes among gene clusters.

          Increasing quantitative data generated from transcriptomics and proteomics require integrative strategies for analysis. Here, we present an R package, clusterProfiler that automates the process of biological-term classification and the enrichment analysis of gene clusters. The analysis module and visualization module were combined into a reusable workflow. Currently, clusterProfiler supports three species, including humans, mice, and yeast. Methods provided in this package can be easily extended to other species and ontologies. The clusterProfiler package is released under Artistic-2.0 License within Bioconductor project. The source code and vignette are freely available at http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytoscape: a software environment for integrated models of biomolecular interaction networks.

            Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              limma powers differential expression analyses for RNA-sequencing and microarray studies

              limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
                Bookmark

                Author and article information

                Contributors
                xj2020092020@163.com
                qinht10001@163.com
                wangchao10107@163.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                26 March 2024
                26 March 2024
                2024
                : 14
                : 7158
                Affiliations
                [1 ]Department of Oncology, Chaohu Hospital of Anhui Medical University, ( https://ror.org/0234wv516) Hefei, China
                [2 ]Affiliated Hospital of Guangdong Medical University, ( https://ror.org/04k5rxe29) Zhanjiang, China
                [3 ]National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, ( https://ror.org/03kkjyb15) Shenzhen, China
                [4 ]Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, ( https://ror.org/03kkjyb15) Shenzhen, China
                Article
                57594
                10.1038/s41598-024-57594-x
                10966107
                38531930
                2a66de39-1906-469c-a3ef-ddc73d0df752
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 19 November 2023
                : 20 March 2024
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100002947, Anhui Medical University;
                Award ID: 2023xkj066
                Award ID: 2020xkj050
                Award ID: 2019xkj162
                Award Recipient :
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                disulfidptosis,riskscore model,prognosis,immunotherapy response,sarcoma,cancer,cell biology,drug discovery,genetics,immunology,molecular biology,oncology,risk factors

                Comments

                Comment on this article