Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The R Language: An Engine for Bioinformatics and Data Science

      , ,
      Life
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The R programming language is approaching its 30th birthday, and in the last three decades it has achieved a prominent role in statistics, bioinformatics, and data science in general. It currently ranks among the top 10 most popular languages worldwide, and its community has produced tens of thousands of extensions and packages, with scopes ranging from machine learning to transcriptome data analysis. In this review, we provide an historical chronicle of how R became what it is today, describing all its current features and capabilities. We also illustrate the major tools of R, such as the current R editors and integrated development environments (IDEs), the R Shiny web server, the R methods for machine learning, and its relationship with other programming languages. We also discuss the role of R in science in general as a driver for reproducibility. Overall, we hope to provide both a complete snapshot of R today and a practical compendium of the major features and applications of this programming language.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

          In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            clusterProfiler: an R package for comparing biological themes among gene clusters.

            Increasing quantitative data generated from transcriptomics and proteomics require integrative strategies for analysis. Here, we present an R package, clusterProfiler that automates the process of biological-term classification and the enrichment analysis of gene clusters. The analysis module and visualization module were combined into a reusable workflow. Currently, clusterProfiler supports three species, including humans, mice, and yeast. Methods provided in this package can be easily extended to other species and ontologies. The clusterProfiler package is released under Artistic-2.0 License within Bioconductor project. The source code and vignette are freely available at http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Welcome to the Tidyverse

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                LBSIB7
                Life
                Life
                MDPI AG
                2075-1729
                May 2022
                April 27 2022
                : 12
                : 5
                : 648
                Article
                10.3390/life12050648
                35629316
                2a00df3d-a795-4a7b-83dc-2156fdf99de4
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article