32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Comparative Analysis of Vibrio cholerae Contamination in Point-of-Drinking and Source Water in a Low-Income Urban Community, Bangladesh

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bangladesh is a cholera endemic country with a population at high risk of cholera. Toxigenic and non-toxigenic Vibrio cholerae ( V. cholerae) can cause cholera and cholera-like diarrheal illness and outbreaks. Drinking water is one of the primary routes of cholera transmission in Bangladesh. The aim of this study was to conduct a comparative assessment of the presence of V. cholerae between point-of-drinking water and source water, and to investigate the variability of virulence profile using molecular methods of a densely populated low-income settlement of Dhaka, Bangladesh. Water samples were collected and tested for V. cholerae from “point-of-drinking” and “source” in 477 study households in routine visits at 6 week intervals over a period of 14 months. We studied the virulence profiles of V. cholerae positive water samples using 22 different virulence gene markers present in toxigenic O1/O139 and non-O1/O139 V. cholerae using polymerase chain reaction (PCR). A total of 1,463 water samples were collected, with 1,082 samples from point-of-drinking water in 388 households and 381 samples from 66 water sources. V. cholerae was detected in 10% of point-of-drinking water samples and in 9% of source water samples. Twenty-three percent of households and 38% of the sources were positive for V. cholerae in at least one visit. Samples collected from point-of-drinking and linked sources in a 7 day interval showed significantly higher odds ( P < 0.05) of V. cholerae presence in point-of-drinking compared to source [OR = 17.24 (95% CI = 7.14–42.89)] water. Based on the 7 day interval data, 53% (17/32) of source water samples were negative for V. cholerae while linked point-of-drinking water samples were positive. There were significantly higher odds ( p < 0.05) of the presence of V. cholerae O1 [OR = 9.13 (95% CI = 2.85–29.26)] and V. cholerae O139 [OR = 4.73 (95% CI = 1.19–18.79)] in source water samples than in point-of-drinking water samples. Contamination of water at the point-of-drinking is less likely to depend on the contamination at the water source. Hygiene education interventions and programs should focus and emphasize on water at the point-of-drinking, including repeated cleaning of drinking vessels, which is of paramount importance in preventing cholera.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Updated Global Burden of Cholera in Endemic Countries

          Background The global burden of cholera is largely unknown because the majority of cases are not reported. The low reporting can be attributed to limited capacity of epidemiological surveillance and laboratories, as well as social, political, and economic disincentives for reporting. We previously estimated 2.8 million cases and 91,000 deaths annually due to cholera in 51 endemic countries. A major limitation in our previous estimate was that the endemic and non-endemic countries were defined based on the countries’ reported cholera cases. We overcame the limitation with the use of a spatial modelling technique in defining endemic countries, and accordingly updated the estimates of the global burden of cholera. Methods/Principal Findings Countries were classified as cholera endemic, cholera non-endemic, or cholera-free based on whether a spatial regression model predicted an incidence rate over a certain threshold in at least three of five years (2008-2012). The at-risk populations were calculated for each country based on the percent of the country without sustainable access to improved sanitation facilities. Incidence rates from population-based published studies were used to calculate the estimated annual number of cases in endemic countries. The number of annual cholera deaths was calculated using inverse variance-weighted average case-fatality rate (CFRs) from literature-based CFR estimates. We found that approximately 1.3 billion people are at risk for cholera in endemic countries. An estimated 2.86 million cholera cases (uncertainty range: 1.3m-4.0m) occur annually in endemic countries. Among these cases, there are an estimated 95,000 deaths (uncertainty range: 21,000-143,000). Conclusion/Significance The global burden of cholera remains high. Sub-Saharan Africa accounts for the majority of this burden. Our findings can inform programmatic decision-making for cholera control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cholera.

            Despite more than a century of study, cholera still presents challenges and surprises to us. Throughout most of the 20th century, cholera was caused by Vibrio cholerae of the O1 serogroup and the disease was largely confined to Asia and Africa. However, the last decade of the 20th century has witnessed two major developments in the history of this disease. In 1991, a massive outbreak of cholera started in South America, the one continent previously untouched by cholera in this century. In 1992, an apparently new pandemic caused by a previously unknown serogroup of V. cholerae (O139) began in India and Bangladesh. The O139 epidemic has been occurring in populations assumed to be largely immune to V. cholerae O1 and has rapidly spread to many countries including the United States. In this review, we discuss all aspects of cholera, including the clinical microbiology, epidemiology, pathogenesis, and clinical features of the disease. Special attention will be paid to the extraordinary advances that have been made in recent years in unravelling the molecular pathogenesis of this infection and in the development of new generations of vaccines to prevent it.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein OmpW.

              The distribution of genes for an outer membrane protein (OmpW) and a regulatory protein (ToxR) in Vibrio cholerae and other organisms was studied using respective primers and probes. PCR amplification results showed that all (100%) of the 254 V. cholerae strains tested were positive for ompW and 229 ( approximately 98%) of 233 were positive for toxR. None of the 40 strains belonging to other Vibrio species produced amplicons with either ompW- or toxR-specific primers, while 80 bacterial strains from other genera tested were also found to be negative by the assay. These studies were extended with representative number of strains using ompW- and toxR-specific probes in DNA dot blot assay. While the V. cholerae strains reacted with ompW probe, only one (V. mimicus) out of 60 other bacterial strains tested showed weak recognition. In contrast, several strains belonging to other Vibrio species (e.g., V. mimicus, V. splendidus, V. alginolyticus, V. fluvialis, V. proteolyticus, V. aestuarianus, V. salmonicida, V. furnissii, and V. parahaemolyticus) showed weak to strong reactivity to the toxR probe. Restriction fragment length polymorphism analysis and nucleotide sequence data revealed that the ompW sequence is highly conserved among V. cholerae strains belonging to different biotypes and/or serogroups. All of these results suggest that the ompW gene can be targeted for the species-specific identification of V. cholerae strains. The scope of this study was further extended through the development of a one-step multiplex PCR assay for the simultaneous amplification of ompW and ctxA genes which should be of considerable value in the screening of both toxigenic and nontoxigenic V. cholerae strains of clinical as well as environmental origin.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                19 March 2018
                2018
                : 9
                : 489
                Affiliations
                [1] 1Department of Microbiology, University of Dhaka , Dhaka, Bangladesh
                [2] 2Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen , Copenhagen, Denmark
                [3] 3International Centre for Diarrhoeal Disease Research , Dhaka, Bangladesh
                [4] 4Institute of Health Economics, University of Dhaka , Dhaka, Bangladesh
                Author notes

                Edited by: Pascal E. Saikaly, King Abdullah University of Science and Technology, Saudi Arabia

                Reviewed by: Lucy Semerjian, University of Sharjah, United Arab Emirates; Dong Li, University of California, Santa Barbara, United States

                This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.00489
                5867346
                29616005
                29e2bf71-fee5-41c6-8ed0-9631a9fd2eb3
                Copyright © 2018 Ferdous, Sultana, Rashid, Tasnimuzzaman, Nordland, Begum and Jensen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 January 2018
                : 02 March 2018
                Page count
                Figures: 1, Tables: 3, Equations: 0, References: 64, Pages: 9, Words: 7559
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                vibrio cholerae,drinking water,o1/o139,non-o1/non-o139,household,point-of-drinking,source water

                Comments

                Comment on this article

                scite_

                Similar content370

                Cited by7

                Most referenced authors791