13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolic output defines Escherichia coli as a health-promoting microbe against intestinal Pseudomonas aeruginosa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gut microbiota acts as a barrier against intestinal pathogens, but species-specific protection of the host from infection remains relatively unexplored. Although lactobacilli and bifidobacteria produce beneficial lactic and short-chain fatty acids in the mammalian gut, the significance of intestinal Escherichia coli producing these acids is debatable. Taking a Koch’s postulates approach in reverse, we define Escherichia coli as health-promoting for naturally colonizing the gut of healthy mice and protecting them against intestinal colonization and concomitant mortality by Pseudomonas aeruginosa. Reintroduction of faecal bacteria and E. coli in antibiotic-treated mice establishes a high titre of E. coli in the host intestine and increases defence against P. aeruginosa colonization and mortality. Strikingly, high sugar concentration favours E. coli fermentation to lactic and acetic acid and inhibits P. aeruginosa growth and virulence in aerobic cultures and in a model of aerobic metabolism in flies, while dietary vegetable fats - not carbohydrates or proteins - favour E. coli fermentation and protect the host in the anaerobic mouse gut. Thus E. coli metabolic output is an important indicator of resistance to infection. Our work may also suggest that the lack of antimicrobial bacterial metabolites in mammalian lungs and wounds allows P. aeruginosa to be a formidable microbe at these sites.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Host-derived nitrate boosts growth of E. coli in the inflamed gut.

          Changes in the microbial community structure are observed in individuals with intestinal inflammatory disorders. These changes are often characterized by a depletion of obligate anaerobic bacteria, whereas the relative abundance of facultative anaerobic Enterobacteriaceae increases. The mechanisms by which the host response shapes the microbial community structure, however, remain unknown. We show that nitrate generated as a by-product of the inflammatory response conferred a growth advantage to the commensal bacterium Escherichia coli in the large intestine of mice. Mice deficient in inducible nitric oxide synthase did not support the growth of E. coli by nitrate respiration, suggesting that the nitrate generated during inflammation was host-derived. Thus, the inflammatory host response selectively enhances the growth of commensal Enterobacteriaceae by generating electron acceptors for anaerobic respiration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Common virulence factors for bacterial pathogenicity in plants and animals.

            A Pseudomonas aeruginosa strain (UCBPP-PA14) is infectious both in an Arabidopsis thaliana leaf infiltration model and in a mouse full-thickness skin burn model. UCBPP-PA14 exhibits ecotype specificity for Arabidopsis, causing a range of symptoms from none to severe in four different ecotypes. In the mouse model, UCBPP-PA14 is as lethal as other well-studied P. aeruginosa strains. Mutations in the UCBPP-PA14 toxA, plcS, and gacA genes resulted in a significant reduction in pathogenicity in both hosts, indicating that these genes encode virulence factors required for the full expression of pathogenicity in both plants and animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane.

              The effect of lactic acid on the outer membrane permeability of Escherichia coli O157:H7, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium was studied utilizing a fluorescent-probe uptake assay and sensitization to bacteriolysis. For control purposes, similar assays were performed with EDTA (a permeabilizer acting by chelation) and with hydrochloric acid, the latter at pH values corresponding to those yielded by lactic acid, and also in the presence of KCN. Already 5 mM (pH 4.0) lactic acid caused prominent permeabilization in each species, the effect in the fluorescence assay being stronger than that of EDTA or HCl. Similar results were obtained in the presence of KCN, except for P. aeruginosa, for which an increase in the effect of HCl was observed in the presence of KCN. The permeabilization by lactic and hydrochloric acid was partly abolished by MgCl(2). Lactic acid sensitized E. coli and serovar Typhimurium to the lytic action of sodium dodecyl sulfate (SDS) more efficiently than did HCl, whereas both acids sensitized P. aeruginosa to SDS and to Triton X-100. P. aeruginosa was effectively sensitized to lysozyme by lactic acid and by HCl. Considerable proportions of lipopolysaccharide were liberated from serovar Typhimurium by these acids; analysis of liberated material by electrophoresis and by fatty acid analysis showed that lactic acid was more active than EDTA or HCl in liberating lipopolysaccharide from the outer membrane. Thus, lactic acid, in addition to its antimicrobial property due to the lowering of the pH, also functions as a permeabilizer of the gram-negative bacterial outer membrane and may act as a potentiator of the effects of other antimicrobial substances.
                Bookmark

                Author and article information

                Contributors
                apidiana@ucy.ac.cy
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                8 October 2019
                8 October 2019
                2019
                : 9
                : 14463
                Affiliations
                ISNI 0000000121167908, GRID grid.6603.3, Department of Biological Sciences, , University of Cyprus, ; Nicosia, Cyprus
                Article
                51058
                10.1038/s41598-019-51058-3
                6783455
                31595010
                29cd0b92-1586-44d8-adea-657edac61b1d
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 3 May 2019
                : 25 September 2019
                Funding
                Funded by: Marie Curie CIG and Fondation Sante for funding to YA
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                bacterial genetics,pathogens
                Uncategorized
                bacterial genetics, pathogens

                Comments

                Comment on this article