11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Variability of Muscle Synergies in Hand Grasps: Analysis of Intra- and Inter-Session Data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background. Muscle synergy analysis is an approach to understand the neurophysiological mechanisms behind the hypothesized ability of the Central Nervous System (CNS) to reduce the dimensionality of muscle control. The muscle synergy approach is also used to evaluate motor recovery and the evolution of the patients’ motor performance both in single-session and longitudinal studies. Synergy-based assessments are subject to various sources of variability: natural trial-by-trial variability of performed movements, intrinsic characteristics of subjects that change over time (e.g., recovery, adaptation, exercise, etc.), as well as experimental factors such as different electrode positioning. These sources of variability need to be quantified in order to resolve challenges for the application of muscle synergies in clinical environments. The objective of this study is to analyze the stability and similarity of extracted muscle synergies under the effect of factors that may induce variability, including inter- and intra-session variability within subjects and inter-subject variability differentiation. The analysis was performed using the comprehensive, publicly available hand grasp NinaPro Database, featuring surface electromyography (EMG) measures from two EMG electrode bracelets. Methods. Intra-session, inter-session, and inter-subject synergy stability was analyzed using the following measures: variance accounted for (VAF) and number of synergies (NoS) as measures of reconstruction stability quality and cosine similarity for comparison of spatial composition of extracted synergies. Moreover, an approach based on virtual electrode repositioning was applied to shed light on the influence of electrode position on inter-session synergy similarity. Results. Inter-session synergy similarity was significantly lower with respect to intra-session similarity, both considering coefficient of variation of VAF (approximately 0.2–15% for inter vs. approximately 0.1% to 2.5% for intra, depending on NoS) and coefficient of variation of NoS (approximately 6.5–14.5% for inter vs. approximately 3–3.5% for intra, depending on VAF) as well as synergy similarity (approximately 74–77% for inter vs. approximately 88–94% for intra, depending on the selected VAF). Virtual electrode repositioning revealed that a slightly different electrode position can lower similarity of synergies from the same session and can increase similarity between sessions. Finally, the similarity of inter-subject synergies has no significant difference from the similarity of inter-session synergies (both on average approximately 84–90% depending on selected VAF). Conclusion. Synergy similarity was lower in inter-session conditions with respect to intra-session. This finding should be considered when interpreting results from multi-session assessments. Lastly, electrode positioning might play an important role in the lower similarity of synergies over different sessions.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Muscle synergy patterns as physiological markers of motor cortical damage.

          The experimental findings herein reported are aimed at gaining a perspective on the complex neural events that follow lesions of the motor cortical areas. Cortical damage, whether by trauma or stroke, interferes with the flow of descending signals to the modular interneuronal structures of the spinal cord. These spinal modules subserve normal motor behaviors by activating groups of muscles as individual units (muscle synergies). Damage to the motor cortical areas disrupts the orchestration of the modules, resulting in abnormal movements. To gain insights into this complex process, we recorded myoelectric signals from multiple upper-limb muscles in subjects with cortical lesions. We used a factorization algorithm to identify the muscle synergies. Our factorization analysis revealed, in a quantitative way, three distinct patterns of muscle coordination-including preservation, merging, and fractionation of muscle synergies-that reflect the multiple neural responses that occur after cortical damage. These patterns varied as a function of both the severity of functional impairment and the temporal distance from stroke onset. We think these muscle-synergy patterns can be used as physiological markers of the status of any patient with stroke or trauma, thereby guiding the development of different rehabilitation approaches, as well as future physiological experiments for a further understanding of postinjury mechanisms of motor control and recovery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Shared and specific muscle synergies in natural motor behaviors.

            Selecting the appropriate muscle pattern to achieve a given goal is an extremely complex task because of the dimensionality of the search space and because of the nonlinear and dynamical nature of the transformation between muscle activity and movement. To investigate whether the central nervous system uses a modular architecture to achieve motor coordination we characterized the motor output over a large set of movements. We recorded electromyographic activity from 13 muscles of the hind limb of intact and freely moving frogs during jumping, swimming, and walking in naturalistic conditions. We used multidimensional factorization techniques to extract invariant amplitude and timing relationships among the muscle activations. A decomposition of the instantaneous muscle activations as combinations of nonnegative vectors, synchronous muscle synergies, revealed a spatial organization in the muscle patterns. A decomposition of the same activations as a combination of temporal sequences of nonnegative vectors, time-varying muscle synergies, further uncovered specific characteristics in the muscle activation waveforms. A mixture of synergies shared across behaviors and synergies for specific behaviors captured the invariances across the entire dataset. These results support the hypothesis that the motor controller has a modular organization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Electromyography data for non-invasive naturally-controlled robotic hand prostheses

              Recent advances in rehabilitation robotics suggest that it may be possible for hand-amputated subjects to recover at least a significant part of the lost hand functionality. The control of robotic prosthetic hands using non-invasive techniques is still a challenge in real life: myoelectric prostheses give limited control capabilities, the control is often unnatural and must be learned through long training times. Meanwhile, scientific literature results are promising but they are still far from fulfilling real-life needs. This work aims to close this gap by allowing worldwide research groups to develop and test movement recognition and force control algorithms on a benchmark scientific database. The database is targeted at studying the relationship between surface electromyography, hand kinematics and hand forces, with the final goal of developing non-invasive, naturally controlled, robotic hand prostheses. The validation section verifies that the data are similar to data acquired in real-life conditions, and that recognition of different hand tasks by applying state-of-the-art signal features and machine-learning algorithms is possible.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                01 August 2020
                August 2020
                : 20
                : 15
                : 4297
                Affiliations
                [1 ]Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland; una.pale@ 123456epfl.ch
                [2 ]Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO), 3960 Sierre, Switzerland; manfredo.atzori@ 123456hevs.ch (M.A.); henning.mueller@ 123456hevs.ch (H.M.)
                [3 ]Medical Faculty, University of Geneva, 1211 Geneva, Switzerland
                [4 ]Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council of Italy (CNR), 23900 Lecco, Italy
                Author notes
                Author information
                https://orcid.org/0000-0001-5397-2063
                https://orcid.org/0000-0001-6800-9878
                https://orcid.org/0000-0002-1896-9325
                Article
                sensors-20-04297
                10.3390/s20154297
                7435387
                32752155
                299921e4-154a-4921-9428-4dd0dd7d458d
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 July 2020
                : 29 July 2020
                Categories
                Article

                Biomedical engineering
                muscle synergies,hand grasps,variability,intra-session,inter-session,virtual electrode repositioning

                Comments

                Comment on this article