15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          AMP-activated protein kinase (AMPK) is tightly regulated by the cellular AMP:ATP ratio and plays a central role in regulation of energy homeostasis and metabolic stress. Metformin has been shown to activate AMPK. We hypothesized that metformin may prevent nuclear factor kappaB (NF-kappaB) activation in endothelial cells exposed to inflammatory cytokines. Metformin was observed to activate AMPK, as well as its downstream target, phosphoacetyl coenzyme A carboxylase, in human umbilical vein endothelial cells (HUVECs). Metformin also dose-dependently inhibited tumor necrosis factor (TNF)-alpha-induced NF-kappaB activation and TNF-alpha-induced IkappaB kinase activity. Furthermore, metformin attenuated the TNF-alpha-induced gene expression of various proinflammatory and cell adhesion molecules, such as vascular cell adhesion molecule-1, E-selectin, intercellular adhesion molecule-1, and monocyte chemoattractant protein-1, in HUVECs. A pharmacological activator of AMPK, 5-amino-4-imidazole carboxamide riboside (AICAR), dose-dependently inhibited TNF-alpha- and interleukin-1beta-induced NF-kappaB reporter gene expression. AICAR also suppressed the TNF-alpha- and interleukin-1beta-induced gene expression of vascular cell adhesion molecule-1, E-selectin, intercellular adhesion molecule-1, and monocyte chemoattractant protein-1 in HUVECs. The small interfering RNA for AMPKalpha1 attenuated metformin or AICAR-induced inhibition of NF-kappaB activation by TNF-alpha, suggesting a possible role of AMPK in the regulation of cell inflammation. In light of these findings, we suggest that metformin attenuates the cytokine-induced expression of proinflammatory and adhesion molecule genes by inhibiting NF-kappaB activation via AMPK activation. Thus, it might be useful to target AMPK signaling in future efforts to prevent atherogenic and inflammatory vascular disease.

          Related collections

          Author and article information

          Journal
          Hypertension
          Hypertension (Dallas, Tex. : 1979)
          Ovid Technologies (Wolters Kluwer Health)
          1524-4563
          0194-911X
          Jun 2006
          : 47
          : 6
          Affiliations
          [1 ] Department of Endocrinology and Metabolism, Dokkyo University School of Medicine, Mibu, Tochigi 321-0293, Japan. yhattori@dokkyomed.ac.jp
          Article
          01.HYP.0000221429.94591.72
          10.1161/01.HYP.0000221429.94591.72
          16636195
          29836fdb-eeeb-46b6-9ce7-17306344c8f9
          History

          Comments

          Comment on this article