7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Highly Fluorescent Chiral N-S-Doped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Quantum dot bioconjugates for ultrasensitive nonisotopic detection.

          W Chan, S Nie (1998)
          Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection. In comparison with organic dyes such as rhodamine, this class of luminescent labels is 20 times as bright, 100 times as stable against photobleaching, and one-third as wide in spectral linewidth. These nanometer-sized conjugates are water-soluble and biocompatible. Quantum dots that were labeled with the protein transferrin underwent receptor-mediated endocytosis in cultured HeLa cells, and those dots that were labeled with immunomolecules recognized specific antibodies or antigens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Chaotic Dirac billiard in graphene quantum dots

            We report on transport characteristics of quantum dot devices etched entirely in graphene. At large sizes, they behave as conventional single-electron transistors, exhibiting periodic Coulomb blockade peaks. For quantum dots smaller than 100 nm, the peaks become strongly non-periodic indicating a major contribution of quantum confinement. Random peak spacing and its statistics are well described by the theory of chaotic neutrino (Dirac) billiards. Short constrictions of only a few nm in width remain conductive and reveal a confinement gap of up to 0.5eV, which demonstrates the in-principle possibility of molecular-scale electronics based on graphene.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Graphene photodetectors with ultra-broadband and high responsivity at room temperature.

              The ability to detect light over a broad spectral range is central to several technological applications in imaging, sensing, spectroscopy and communication. Graphene is a promising candidate material for ultra-broadband photodetectors, as its absorption spectrum covers the entire ultraviolet to far-infrared range. However, the responsivity of graphene-based photodetectors has so far been limited to tens of mA W(-1) (refs 5-10) due to the small optical absorption of a monolayer of carbon atoms. Integration of colloidal quantum dots in the light absorption layer can improve the responsivity of graphene photodetectors to ∼ 1 × 10(7) A W(-1) (ref. 11), but the spectral range of photodetection is reduced because light absorption occurs in the quantum dots. Here, we report an ultra-broadband photodetector design based on a graphene double-layer heterostructure. The detector is a phototransistor consisting of a pair of stacked graphene monolayers (top layer, gate; bottom layer, channel) separated by a thin tunnel barrier. Under optical illumination, photoexcited hot carriers generated in the top layer tunnel into the bottom layer, leading to a charge build-up on the gate and a strong photogating effect on the channel conductance. The devices demonstrated room-temperature photodetection from the visible to the mid-infrared range, with mid-infrared responsivity higher than 1 A W(-1), as required by most applications. These results address key challenges for broadband infrared detectors, and are promising for the development of graphene-based hot-carrier optoelectronic applications.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley
                14337851
                February 23 2018
                February 23 2018
                February 08 2018
                : 57
                : 9
                : 2377-2382
                Affiliations
                [1 ]Key Lab of Organic Optoelectronics & Molecular Engineering; Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
                [2 ]School of Chemical Engineering and Technology; Key Laboratory of Systems Bioengineering (Ministry of Education); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin University; Tianjin 300072 P. R. China
                [3 ]CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center of Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P. R. China
                [4 ]University of Chinese Academy of Sciences; Beijing 100049 P. R. China
                [5 ]National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing 100101 P. R. China
                Article
                10.1002/anie.201712453
                29801766-7b9e-4573-91ed-445f6fcc3e05
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article