38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Distinct functions of S. pombe Rec12 (Spo11) protein and Rec12-dependent crossover recombination (chiasmata) in meiosis I; and a requirement for Rec12 in meiosis II

      research-article
      1 , 2 , 1 , 1 ,
      Cell & Chromosome
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In most organisms proper reductional chromosome segregation during meiosis I is strongly correlated with the presence of crossover recombination structures (chiasmata); recombination deficient mutants lack crossovers and suffer meiosis I nondisjunction. We report that these functions are separable in the fission yeast Schizosaccharomyces pombe.

          Results

          Intron mapping and expression studies confirmed that Rec12 is a member of the Spo11/Top6A topoisomerase family required for the formation of meiotic dsDNA breaks and recombination. rec12-117, rec12-D15 (null), and rec12-Y98F (active site) mutants lacked most crossover recombination and chromosomes segregated abnormally to generate aneuploid meiotic products. Since S. pombe contains only three chromosome pairs, many of those aneuploid products were viable. The types of aberrant chromosome segregation were inferred from the inheritance patterns of centromere linked markers in diploid meiotic products. The rec12-117 and rec12-D15 mutants manifest segregation errors during both meiosis I and meiosis II. Remarkably, the rec12-Y98F (active site) mutant exhibited essentially normal meiosis I segregation patterns, but still exhibited meiosis II segregation errors.

          Conclusions

          Rec12 is a 345 amino acid protein required for most crossover recombination and for chiasmatic segregation of chromosomes during meiosis I. Rec12 also participates in a backup distributive (achiasmatic) system of chromosome segregation during meiosis I. In addition, catalytically-active Rec12 mediates some signal that is required for faithful equational segregation of chromosomes during meiosis II.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          The mouse Spo11 gene is required for meiotic chromosome synapsis.

          The Spo11 protein initiates meiotic recombination by generating DNA double-strand breaks (DSBs) and is required for meiotic synapsis in S. cerevisiae. Surprisingly, Spo11 homologs are dispensable for synapsis in C. elegans and Drosophila yet required for meiotic recombination. Disruption of mouse Spo11 results in infertility. Spermatocytes arrest prior to pachytene with little or no synapsis and undergo apoptosis. We did not detect Rad51/Dmc1 foci in meiotic chromosome spreads, indicating DSBs are not formed. Cisplatin-induced DSBs restored Rad51/Dmc1 foci and promoted synapsis. Spo11 localizes to discrete foci during leptotene and to homologously synapsed chromosomes. Other mouse mutants that arrest during meiotic prophase (Atm -/-, Dmc1 -/-, mei1, and Morc(-/-)) showed altered Spo11 protein localization and expression. We speculate that there is an additional role for Spo11, after it generates DSBs, in synapsis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11.

            Spo11, a protein first identified in yeast, is thought to generate the chromosome breaks that initiate meiotic recombination. We now report that disruption of mouse Spo11 leads to severe gonadal abnormalities from defective meiosis. Spermatocytes suffer apoptotic death during early prophase; oocytes reach the diplotene/dictyate stage in nearly normal numbers, but most die soon after birth. Consistent with a conserved function in initiating meiotic recombination, Dmc1/Rad51 focus formation is abolished. Spo11(-/-) meiocytes also display homologous chromosome synapsis defects, similar to fungi but distinct from flies and nematodes. We propose that recombination initiation precedes and is required for normal synapsis in mammals. Our results also support the view that mammalian checkpoint responses to meiotic recombination and/or synapsis defects are sexually dimorphic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis.

              Chromosome segregation at meiosis I depends on pairing and crossing-over between homologs. In most eukaryotes, pairing culminates with formation of the proteinaceous synaptonemal complex (SC). In budding yeast, recombination initiates through double-strand DNA breaks (DSBs) and is thought to be essential for SC formation. Here, we examine whether this mechanism for initiating meiotic recombination is conserved, and we test the dependence of homologous chromosome synapsis on recombination in C. elegans. We find that a homolog of the yeast DSB-generating enzyme, Spo11p, is required for meiotic exchange in this metazoan, and that radiation-induced breaks partially alleviate this dependence. Thus, initiation of recombination by DSBs is apparently conserved. However, homologous synapsis is independent of recombination in the nematode, since it occurs normally in a C. elegans spo-11 null mutant.
                Bookmark

                Author and article information

                Journal
                Cell Chromosome
                Cell & Chromosome
                BioMed Central (London )
                1475-9268
                2002
                19 September 2002
                : 1
                : 1
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
                [2 ]Vanderbilt University School of Medicine Nashville, TN 37232-0146, USA
                Article
                1475-9268-1-1
                10.1186/1475-9268-1-1
                131009
                12437782
                297153c4-5f8f-4e02-bb8b-3256e543ee69
                Copyright © 2002 Sharif et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                History
                : 12 August 2002
                : 19 September 2002
                Categories
                Research

                Cell biology
                Cell biology

                Comments

                Comment on this article