17
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preventing the Next Pandemic through a Planetary Health Approach: A Focus on Key Drivers of Zoonosis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ever-increasing global health impact of SARS-CoV-2—the etiological agent of coronavirus disease 2019 (COVID-19)—coupled with its socio-economic burden, has not only revealed the vulnerability of humanity to zoonotic pathogens of pandemic potential but also serves as a wake-up call for global health communities to rethink sustainable approaches towards preventing future pandemics. However, since the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) convened experts have declared that future pandemics are likely to be zoonotic in origin, it is imperative that we understand the key drivers of zoonosis such as biodiversity loss, climate change, wildlife consumption, and population mobility, as well as the scientific evidence underpinning them. In this article, we underscore the correlations of these drivers with the emergence and re-emergence of zoonosis. Consequently, we highlighted the need for multidisciplinary collaboration under the planetary health approach between researchers across the fields of environmental and human health to fill the knowledge and research gaps on key drivers of zoonosis. This is to prevent or limit future pandemics by protecting the natural systems of the Earth and its resources and safeguarding human and animal health.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          The global distribution and burden of dengue

          Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes 1 . For some patients dengue is a life-threatening illness 2 . There are currently no licensed vaccines or specific therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global spread 3 . The contemporary worldwide distribution of the risk of dengue virus infection 4 and its public health burden are poorly known 2,5 . Here we undertake an exhaustive assembly of known records of dengue occurrence worldwide, and use a formal modelling framework to map the global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal information from dengue cohort studies and population surfaces to infer the public health burden of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and the degree of urbanisation. Using cartographic approaches, we estimate there to be 390 million (95 percent credible interval 284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level of clinical or sub-clinical severity). This infection total is more than three times the dengue burden estimate of the World Health Organization 2 . Stratification of our estimates by country allows comparison with national dengue reporting, after taking into account the probability of an apparent infection being formally reported. The most notable differences are discussed. These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue. We anticipate that they will provide a starting point for a wider discussion about the global impact of this disease and will help guide improvements in disease control strategies using vaccine, drug and vector control methods and in their economic evaluation. [285]
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global trends in emerging infectious diseases

            The next new disease Emerging infectious diseases are a major threat to health: AIDS, SARS, drug-resistant bacteria and Ebola virus are among the more recent examples. By identifying emerging disease 'hotspots', the thinking goes, it should be possible to spot health risks at an early stage and prepare containment strategies. An analysis of over 300 examples of disease emerging between 1940 and 2004 suggests that these hotspots can be accurately mapped based on socio-economic, environmental and ecological factors. The data show that the surveillance effort, and much current research spending, is concentrated in developed economies, yet the risk maps point to developing countries as the more likely source of new diseases. Supplementary information The online version of this article (doi:10.1038/nature06536) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SARS and MERS: recent insights into emerging coronaviruses

              Key Points Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic pathogens that can cause severe respiratory disease in humans. Although disease progression is fairly similar for SARS and MERS, the case fatality rate of MERS is much higher than that of SARS. Comorbidities have an important role in SARS and MERS. Several risk factors are associated with progression to acute respiratory distress syndrome (ARDS) in SARS and MERS cases, especially advanced age and male sex. For MERS, additional risk factors that are associated with severe disease include chronic conditions such as diabetes mellitus, hypertension, cancer, renal and lung disease, and co-infections. Although the ancestors of SARS-CoV and MERS-CoV probably circulate in bats, zoonotic transmission of SARS-CoV required an incidental amplifying host. Dromedary camels are the MERS-CoV reservoir from which zoonotic transmission occurs; serological evidence indicates that MERS-CoV-like viruses have been circulating in dromedary camels for at least three decades. Human-to-human transmission of SARS-CoV and MERS-CoV occurs mainly in health care settings. Patients do not shed large amounts of virus until well after the onset of symptoms, when patients are most probably already seeking medical care. Analysis of hospital surfaces after the treatment of patients with MERS showed the ubiquitous presence of infectious virus. Our understanding of the pathogenesis of SARS-CoV and MERS-CoV is still incomplete, but the combination of viral replication in the lower respiratory tract and an aberrant immune response is thought to have a crucial role in the severity of both syndromes. The severity of the diseases that are caused by emerging coronaviruses highlights the need to develop effective therapeutic measures against these viruses. Although several treatments for SARS and MERS (based on inhibition of viral replication with drugs or neutralizing antibodies, or on dampening the host response) have been identified in animal models and in vitro studies, efficacy data from human clinical trials are urgently required. Supplementary information The online version of this article (doi:10.1038/nrmicro.2016.81) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Challenges
                Challenges
                MDPI AG
                2078-1547
                December 2022
                September 30 2022
                : 13
                : 2
                : 50
                Article
                10.3390/challe13020050
                29708219-6a8e-4626-b032-ef1f203ccf2b
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article