141
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sputnik V COVID-19 vaccine candidate appears safe and effective

      discussion
      a , b
      Lancet (London, England)
      Elsevier Ltd.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Denis Logunov and colleagues 1 report their interim results from a phase 3 trial of the Sputnik V COVID-19 vaccine in The Lancet. The trial results show a consistent strong protective effect across all participant age groups. Also known as Gam-COVID-Vac, the vaccine uses a heterologous recombinant adenovirus approach using adenovirus 26 (Ad26) and adenovirus 5 (Ad5) as vectors for the expression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. The use of two varying serotypes, which are given 21 days apart, is intended to overcome any pre-existing adenovirus immunity in the population. 2 Among the major COVID vaccines in development to date, only Gam-COVID-Vac uses this approach; others, such as the Oxford–AstraZeneca vaccine, use the same material for both doses. The earlier vaccine for Ebola virus disease, also developed at Gamaleya National Research Centre for Epidemiology and Microbiology (Moscow, Russia), was similar, with Ad5 and vesicular stomatitis virus as the carrier viruses, 3 and the general principle of prime boost with two different vectors has been widely used experimentally. 4 The recombinant adenovirus route to protection is shared with the Oxford–AstraZeneca vaccine, which uses a chimpanzee adenovirus (ChAdOx), 5 the Johnson & Johnson vaccine that uses only Ad26 6 whose detailed results are expected soon, and the CanSinoBIO-Beijing Institute of Biotechnology Ad5-based vaccine whose phase 3 trial began in September, 2020. 7 The carrier viruses are modified and cannot initiate a productive infection; they enter cells, express the spike protein, and then stop (because they cannot continue the normal virus lifecycle), although a high-sensitivity analysis also showed that a few Ad genes were expressed, albeit at a low level. 8 The vaccine-infected cells are eventually destroyed by the very immunity they are designed to elicit. Recombinant adenoviruses have been used widely as vaccine vectors because they can accommodate large genetic payloads and, although unable to replicate, they trigger the innate immunity sensors sufficiently to ensure robust immune system engagement. 9 Consequently, they do not need an adjuvant and can provide immunity after just a single dose. 4 Their physical robustness is thought to allow storage at temperatures around –18°C, which is feasible for many supply chains. The downside of recombinant adenovirus-based vaccines is that large doses are required, typically 1010 or 1011 particles, which makes large demands on the manufacturing and quantitation required for rollout on a global scale. What then of the Sputnik V COVID-19 vaccine data published here? The earlier phase 1/2 data published in September, 2020, showed promising safety results and gave an indication that the immune response was at a level consistent with protection. 10 Recipients generated robust antibody responses to the spike protein, which included neutralising antibodies, the proportion of the total immunoglobulin that inhibits the virus binding to its receptor. They also showed evidence of T-cell responses, consistent with an immune response that should not quickly wane. The interim report of the phase 3 data now presented 1 includes results for more than 20 000 participants, 75% of whom were assigned to receive the vaccine, and the follow-up for adverse events and infection. With a planned study power of 85%, those recruited were aged 18 years and older, were about 60% male, and were almost all white. Comorbidities, a known risk for COVID-19 severity, were present in about a quarter of those who entered the trial. 62 (1·3%) of 4902 individuals in the placebo group and 16 (0·1%) of 14 964 participants in the vaccine group had confirmed SARS-CoV-2 infection from day 21 after first vaccine dose (the primary outcome). A time-resolved plot of the incidence rate in the two groups showed that the immunity required to prevent disease arose within 18 days of the first dose. That protection applied to all age groups, including those older than 60 years, and the anecdotal case histories of those vaccinated but infected suggest that the severity of disease decreases as immunity develops. Three fatalities occurred in the vaccine group in individuals with extensive comorbidities, and were deemed unrelated to the vaccine. No serious adverse events considered related to the vaccine were recorded, but serious adverse events unrelated to the vaccine were reported in 45 participants from the vaccine group and 23 participants from the placebo group. Vaccine efficacy, based on the numbers of confirmed COVID-19 cases from 21 days after the first dose of vaccine, is reported as 91·6% (95% CI 85·6–95·2), and the suggested lessening of disease severity after one dose is particularly encouraging for current dose-sparing strategies. © 2021 Anadolu Agency/Getty Images 2021 Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. The development of the Sputnik V vaccine has been criticised for unseemly haste, corner cutting, and an absence of transparency. 11 But the outcome reported here is clear and the scientific principle of vaccination is demonstrated, which means another vaccine can now join the fight to reduce the incidence of COVID-19.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

          Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; p interaction =0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. Funding UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D’Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia

            Background A heterologous recombinant adenovirus (rAd)-based vaccine, Gam-COVID-Vac (Sputnik V), showed a good safety profile and induced strong humoral and cellular immune responses in participants in phase 1/2 clinical trials. Here, we report preliminary results on the efficacy and safety of Gam-COVID-Vac from the interim analysis of this phase 3 trial. Methods We did a randomised, double-blind, placebo-controlled, phase 3 trial at 25 hospitals and polyclinics in Moscow, Russia. We included participants aged at least 18 years, with negative SARS-CoV-2 PCR and IgG and IgM tests, no infectious diseases in the 14 days before enrolment, and no other vaccinations in the 30 days before enrolment. Participants were randomly assigned (3:1) to receive vaccine or placebo, with stratification by age group. Investigators, participants, and all study staff were masked to group assignment. The vaccine was administered (0·5 mL/dose) intramuscularly in a prime-boost regimen: a 21-day interval between the first dose (rAd26) and the second dose (rAd5), both vectors carrying the gene for the full-length SARS-CoV-2 glycoprotein S. The primary outcome was the proportion of participants with PCR-confirmed COVID-19 from day 21 after receiving the first dose. All analyses excluded participants with protocol violations: the primary outcome was assessed in participants who had received two doses of vaccine or placebo, serious adverse events were assessed in all participants who had received at least one dose at the time of database lock, and rare adverse events were assessed in all participants who had received two doses and for whom all available data were verified in the case report form at the time of database lock. The trial is registered at ClinicalTrials.gov (NCT04530396). Findings Between Sept 7 and Nov 24, 2020, 21 977 adults were randomly assigned to the vaccine group (n=16 501) or the placebo group (n=5476). 19 866 received two doses of vaccine or placebo and were included in the primary outcome analysis. From 21 days after the first dose of vaccine (the day of dose 2), 16 (0·1%) of 14 964 participants in the vaccine group and 62 (1·3%) of 4902 in the placebo group were confirmed to have COVID-19; vaccine efficacy was 91·6% (95% CI 85·6–95·2). Most reported adverse events were grade 1 (7485 [94·0%] of 7966 total events). 45 (0·3%) of 16 427 participants in the vaccine group and 23 (0·4%) of 5435 participants in the placebo group had serious adverse events; none were considered associated with vaccination, with confirmation from the independent data monitoring committee. Four deaths were reported during the study (three [<0·1%] of 16 427 participants in the vaccine group and one [<0·1%] of 5435 participants in the placebo group), none of which were considered related to the vaccine. Interpretation This interim analysis of the phase 3 trial of Gam-COVID-Vac showed 91·6% efficacy against COVID-19 and was well tolerated in a large cohort. Funding Moscow City Health Department, Russian Direct Investment Fund, Sberbank, and RUSAL.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial

              Background This is the first randomised controlled trial for assessment of the immunogenicity and safety of a candidate non-replicating adenovirus type-5 (Ad5)-vectored COVID-19 vaccine, aiming to determine an appropriate dose of the candidate vaccine for an efficacy study. Methods This randomised, double-blind, placebo-controlled, phase 2 trial of the Ad5-vectored COVID-19 vaccine was done in a single centre in Wuhan, China. Healthy adults aged 18 years or older, who were HIV-negative and previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-free, were eligible to participate and were randomly assigned to receive the vaccine at a dose of 1 × 1011 viral particles per mL or 5 × 1010 viral particles per mL, or placebo. Investigators allocated participants at a ratio of 2:1:1 to receive a single injection intramuscularly in the arm. The randomisation list (block size 4) was generated by an independent statistician. Participants, investigators, and staff undertaking laboratory analyses were masked to group allocation. The primary endpoints for immunogenicity were the geometric mean titres (GMTs) of specific ELISA antibody responses to the receptor binding domain (RBD) and neutralising antibody responses at day 28. The primary endpoint for safety evaluation was the incidence of adverse reactions within 14 days. All recruited participants who received at least one dose were included in the primary and safety analyses. This study is registered with ClinicalTrials.gov, NCT04341389. Findings 603 volunteers were recruited and screened for eligibility between April 11 and 16, 2020. 508 eligible participants (50% male; mean age 39·7 years, SD 12·5) consented to participate in the trial and were randomly assigned to receive the vaccine (1 × 1011 viral particles n=253; 5 × 1010 viral particles n=129) or placebo (n=126). In the 1 × 1011 and 5 × 1010 viral particles dose groups, the RBD-specific ELISA antibodies peaked at 656·5 (95% CI 575·2–749·2) and 571·0 (467·6–697·3), with seroconversion rates at 96% (95% CI 93–98) and 97% (92–99), respectively, at day 28. Both doses of the vaccine induced significant neutralising antibody responses to live SARS-CoV-2, with GMTs of 19·5 (95% CI 16·8–22·7) and 18·3 (14·4–23·3) in participants receiving 1 × 1011 and 5 × 1010 viral particles, respectively. Specific interferon γ enzyme-linked immunospot assay responses post vaccination were observed in 227 (90%, 95% CI 85–93) of 253 and 113 (88%, 81–92) of 129 participants in the 1 × 1011 and 5 × 1010 viral particles dose groups, respectively. Solicited adverse reactions were reported by 183 (72%) of 253 and 96 (74%) of 129 participants in the 1 × 1011 and 5 × 1010 viral particles dose groups, respectively. Severe adverse reactions were reported by 24 (9%) participants in the 1 × 1011 viral particles dose group and one (1%) participant in the 5 × 1010 viral particles dose group. No serious adverse reactions were documented. Interpretation The Ad5-vectored COVID-19 vaccine at 5 × 1010 viral particles is safe, and induced significant immune responses in the majority of recipients after a single immunisation. Funding National Key R&D Programme of China, National Science and Technology Major Project, and CanSino Biologics.
                Bookmark

                Author and article information

                Journal
                Lancet
                Lancet
                Lancet (London, England)
                Elsevier Ltd.
                0140-6736
                1474-547X
                2 February 2021
                20-26 February 2021
                2 February 2021
                : 397
                : 10275
                : 642-643
                Affiliations
                [a ]School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK
                [b ]Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
                Article
                S0140-6736(21)00191-4
                10.1016/S0140-6736(21)00191-4
                7906719
                33545098
                29692866-7eac-47d4-a215-845fb1477f52
                © 2021 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Comment

                Medicine
                Medicine

                Comments

                Comment on this article