37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endogenous Nmnat2 Is an Essential Survival Factor for Maintenance of Healthy Axons

      research-article
      , *
      PLoS Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We conclude that endogenous Nmnat2 prevents spontaneous degeneration of healthy axons and propose that, when present, the more long-lived, functionally related WldS protein substitutes for Nmnat2 loss after axon injury. Endogenous Nmnat2 represents an exciting new therapeutic target for axonal disorders.

          Abstract

          The molecular triggers for axon degeneration remain unknown. We identify endogenous Nmnat2 as a labile axon survival factor whose constant replenishment by anterograde axonal transport is a limiting factor for axon survival. Specific depletion of Nmnat2 is sufficient to induce Wallerian-like degeneration of uninjured axons which endogenous Nmnat1 and Nmnat3 cannot prevent. Nmnat2 is by far the most labile Nmnat isoform and is depleted in distal stumps of injured neurites before Wallerian degeneration begins. Nmnat2 turnover is equally rapid in injured Wld S neurites, despite delayed neurite degeneration, showing it is not a consequence of degeneration and also that Wld S does not stabilize Nmnat2. Depletion of Nmnat2 below a threshold level is necessary for axon degeneration since exogenous Nmnat2 can protect injured neurites when expressed at high enough levels to overcome its short half-life. Furthermore, proteasome inhibition slows both Nmnat2 turnover and neurite degeneration. We conclude that endogenous Nmnat2 prevents spontaneous degeneration of healthy axons and propose that, when present, the more long-lived, functionally related Wld S protein substitutes for Nmnat2 loss after axon injury. Endogenous Nmnat2 represents an exciting new therapeutic target for axonal disorders.

          Author Summary

          In a normally functioning neuron, the cell body supplies the axon with materials needed to keep it healthy. This complex logistical activity breaks down completely after injury and often becomes compromised in neurodegenerative diseases, leading to degeneration of the isolated axon. Whilst there are probably many important cargoes delivered from the cell body that isolated axons cannot exist without indefinitely, proteins that are short-lived will be depleted first, so loss of these proteins is likely to act as a trigger for degeneration. Using clues from a mutant mouse whose axons are protected from such degeneration, we have identified delivery of Nmnat2, a protein with an important enzyme activity, as a limiting factor in axon survival. Importantly, Nmnat2 is very labile and its levels decline rapidly in injured axons before they start to degenerate. Even uninjured axons degenerate in a similar way without it. These properties are consistent with loss of Nmnat2 being a natural stimulus for axon degeneration, and it might therefore be a suitable target for therapeutic intervention.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene.

          Axons and their synapses distal to an injury undergo rapid Wallerian degeneration, but axons in the C57BL/WldS mouse are protected. The degenerative and protective mechanisms are unknown. We identified the protective gene, which encodes an N-terminal fragment of ubiquitination factor E4B (Ube4b) fused to nicotinamide mononucleotide adenylyltransferase (Nmnat), and showed that it confers a dose-dependent block of Wallerian degeneration. Transected distal axons survived for two weeks, and neuromuscular junctions were also protected. Surprisingly, the Wld protein was located predominantly in the nucleus, indicating an indirect protective mechanism. Nmnat enzyme activity, but not NAD+ content, was increased fourfold in WldS tissues. Thus, axon protection is likely to be mediated by altered ubiquitination or pyridine nucleotide metabolism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations in dynein link motor neuron degeneration to defects in retrograde transport.

            Degenerative disorders of motor neurons include a range of progressive fatal diseases such as amyotrophic lateral sclerosis (ALS), spinal-bulbar muscular atrophy (SBMA), and spinal muscular atrophy (SMA). Although the causative genetic alterations are known for some cases, the molecular basis of many SMA and SBMA-like syndromes and most ALS cases is unknown. Here we show that missense point mutations in the cytoplasmic dynein heavy chain result in progressive motor neuron degeneration in heterozygous mice, and in homozygotes this is accompanied by the formation of Lewy-like inclusion bodies, thus resembling key features of human pathology. These mutations exclusively perturb neuron-specific functions of dynein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Axonal transport and neurodegenerative disease.

              Neurons have extensive processes and communication between those processes and the cell body is crucial to neuronal function and survival. Thus, neurons are uniquely dependent on microtubule based transport. Growing evidence supports the idea that deficits in axonal transport contribute to pathogenesis in multiple neurodegenerative diseases. We describe the motor, cytoskeletal, and adaptor proteins involved in axonal transport and their interactions. Data linking disruption of axonal transport to diseases such as ALS are discussed. Finally, we explore the pathways that may cause neuronal dysfunction and death.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                January 2010
                January 2010
                26 January 2010
                : 8
                : 1
                : e1000300
                Affiliations
                [1]The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
                Stanford University School of Medicine
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: JG MPC. Performed the experiments: JG. Analyzed the data: JG. Wrote the paper: JG MPC.

                Article
                09-PLBI-RA-2859R2
                10.1371/journal.pbio.1000300
                2811159
                20126265
                2964a160-3daf-4558-90f6-e6261e75d720
                Gilley, Coleman. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 July 2009
                : 18 December 2009
                Page count
                Pages: 18
                Categories
                Research Article
                Neurological Disorders/Peripheral Neuropathies
                Neurological Disorders/Spinal Disorders
                Neuroscience/Neurobiology of Disease and Regeneration
                Neuroscience/Neuronal Signaling Mechanisms

                Life sciences
                Life sciences

                Comments

                Comment on this article