61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Genetics of Osteosarcoma

      review-article
      1 , 2 , 1 , *
      Sarcoma
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteosarcoma is a primary bone malignancy with a particularly high incidence rate in children and adolescents relative to other age groups. The etiology of this often aggressive cancer is currently unknown, because complicated structural and numeric genomic rearrangements in cancer cells preclude understanding of tumour development. In addition, few consistent genetic changes that may indicate effective molecular therapeutic targets have been reported. However, high-resolution techniques continue to improve knowledge of distinct areas of the genome that are more commonly associated with osteosarcomas. Copy number gains at chromosomes 1p, 1q, 6p, 8q, and 17p as well as copy number losses at chromosomes 3q, 6q, 9, 10, 13, 17p, and 18q have been detected by numerous groups, but definitive oncogenes or tumour suppressor genes remain elusive with respect to many loci. In this paper, we examine studies of the genetics of osteosarcoma to comprehensively describe the heterogeneity and complexity of this cancer.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic instabilities in human cancers.

          Whether and how human tumours are genetically unstable has been debated for decades. There is now evidence that most cancers may indeed be genetically unstable, but that the instability exists at two distinct levels. In a small subset of tumours, the instability is observed at the nucleotide level and results in base substitutions or deletions or insertions of a few nucleotides. In most other cancers, the instability is observed at the chromosome level, resulting in losses and gains of whole chromosomes or large portions thereof. Recognition and comparison of these instabilities are leading to new insights into tumour pathogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The first 30 years of p53: growing ever more complex.

            Thirty years ago p53 was discovered as a cellular partner of simian virus 40 large T-antigen, the oncoprotein of this tumour virus. The first decade of p53 research saw the cloning of p53 DNA and the realization that p53 is not an oncogene but a tumour suppressor that is very frequently mutated in human cancer. In the second decade of research, the function of p53 was uncovered: it is a transcription factor induced by stress, which can promote cell cycle arrest, apoptosis and senescence. In the third decade after its discovery new functions of this protein were revealed, including the regulation of metabolic pathways and cytokines that are required for embryo implantation. The fourth decade of research may see new p53-based drugs to treat cancer. What is next is anybody's guess.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer.

              Aberrant DNA methylation of CpG islands has been widely observed in human colorectal tumors and is associated with gene silencing when it occurs in promoter areas. A subset of colorectal tumors has an exceptionally high frequency of methylation of some CpG islands, leading to the suggestion of a distinct trait referred to as 'CpG island methylator phenotype', or 'CIMP'. However, the existence of CIMP has been challenged. To resolve this continuing controversy, we conducted a systematic, stepwise screen of 195 CpG island methylation markers using MethyLight technology, involving 295 primary human colorectal tumors and 16,785 separate quantitative analyses. We found that CIMP-positive (CIMP+) tumors convincingly represent a distinct subset, encompassing almost all cases of tumors with BRAF mutation (odds ratio = 203). Sporadic cases of mismatch repair deficiency occur almost exclusively as a consequence of CIMP-associated methylation of MLH1 . We propose a robust new marker panel to classify CIMP+ tumors.
                Bookmark

                Author and article information

                Journal
                Sarcoma
                Sarcoma
                SRCM
                Sarcoma
                Hindawi Publishing Corporation
                1357-714X
                1369-1643
                2012
                20 May 2012
                : 2012
                : 627254
                Affiliations
                1Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
                2Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada K7L 3N6
                Author notes

                Academic Editor: Luca Sangiorgi

                Article
                10.1155/2012/627254
                3364016
                22685381
                294d7d64-3cf3-4902-b2d1-eca5e8bfada2
                Copyright © 2012 Jeff W. Martin et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 December 2011
                : 31 January 2012
                Categories
                Review Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article