13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p><strong>Abstract.</strong> The vertical columns of formaldehyde (HCHO) retrieved from two satellite instruments, the Global Ozone Monitoring Instrument-2 (GOME-2) on Metop-A and the Ozone Monitoring Instrument (OMI) on Aura, are used to constrain global emissions of HCHO precursors from open fires, vegetation and human activities in the year 2010. To this end, the emissions are varied and optimized using the adjoint model technique in the IMAGESv2 global CTM (chemical transport model) on a monthly basis and at the model resolution. Given the different local overpass times of GOME-2 (09:30 LT) and OMI (13:30 LT), the simulated diurnal cycle of HCHO columns is investigated and evaluated against ground-based optical measurements at seven sites in Europe, China and Africa. The modeled diurnal cycle exhibits large variability, reflecting competition between photochemistry and emission variations, with noon or early afternoon maxima at remote locations (oceans) and in regions dominated by anthropogenic emissions, late afternoon or evening maxima over fire scenes, and midday minima in isoprene-rich regions. The agreement between simulated and ground-based columns is generally better in summer (with a clear afternoon maximum at mid-latitude sites) than in winter, and the annually averaged ratio of afternoon to morning columns is slightly higher in the model (1.126) than in the ground-based measurements (1.043). <br><br> The anthropogenic VOC (volatile organic compound) sources are found to be weakly constrained by the inversions on the global scale, mainly owing to their generally minor contribution to the HCHO columns, except over strongly polluted regions, like China. The OMI-based inversion yields total flux estimates over China close to the bottom-up inventory (24.6 vs. 25.5 TgVOC yr<sup>−1</sup> in the a priori) with, however, pronounced increases in the northeast of China and reductions in the south. Lower fluxes are estimated based on GOME-2 HCHO columns (20.6 TgVOC yr<sup>−1</sup>), in particular over the northeast, likely reflecting mismatches between the observed and the modeled diurnal cycle in this region. <br><br> The resulting biogenic and pyrogenic flux estimates from both optimizations generally show a good degree of consistency. A reduction of the global annual biogenic emissions of isoprene is derived, of 9 and 13 % according to GOME-2 and OMI, respectively, compared to the a priori estimate of 363 Tg in 2010. The reduction is largest (up to 25–40 %) in the Southeastern US, in accordance with earlier studies. The GOME-2 and OMI satellite columns suggest a global pyrogenic flux decrease by 36 and 33 %, respectively, compared to the GFEDv3 (Global Fire Emissions Database) inventory. This decrease is especially pronounced over tropical forests, such as in Amazonia, Thailand and Myanmar, and is supported by comparisons with CO observations from IASI (Infrared Atmospheric Sounding Interferometer). In contrast to these flux reductions, the emissions due to harvest waste burning are strongly enhanced over the northeastern China plain in June (by ca. 70 % in June according to OMI) as well as over Indochina in March. Sensitivity inversions showed robustness of the inferred estimates, which were found to lie within 7 % of the standard inversion results at the global scale.</p>

          Related collections

          Most cited references81

          • Record: found
          • Abstract: not found
          • Article: not found

          The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Tropospheric chemistry: A global perspective

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2

                Bookmark

                Author and article information

                Journal
                Atmospheric Chemistry and Physics
                Atmos. Chem. Phys.
                Copernicus GmbH
                1680-7324
                2015
                October 26 2015
                : 15
                : 20
                : 11861-11884
                Article
                10.5194/acp-15-11861-2015
                2942f3d0-bbe8-46d1-8628-90047e78e98f
                © 2015

                https://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article

                scite_
                119
                10
                114
                2
                Smart Citations
                119
                10
                114
                2
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content277

                Cited by22

                Most referenced authors1,296