6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigation of Bovine Serum Albumin (BSA) Attachment onto Self-Assembled Monolayers (SAMs) Using Combinatorial Quartz Crystal Microbalance with Dissipation (QCM-D) and Spectroscopic Ellipsometry (SE)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding protein adsorption kinetics to surfaces is of importance for various environmental and biomedical applications. Adsorption of bovine serum albumin to various self-assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a function of surface properties, bovine serum albumin concentration and pH value. Charged surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine serum albumin layer thickness, and increased density of bovine serum albumin protein compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum albumin protein increased with increasing bovine serum albumin concentration. After equilibrium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our data provide further evidence that combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and detachment of adsorbed proteins in systems with environmental implications.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Understanding protein adsorption phenomena at solid surfaces.

          Protein adsorption at solid surfaces plays a key role in many natural processes and has therefore promoted a widespread interest in many research areas. Despite considerable progress in this field there are still widely differing and even contradictive opinions on how to explain the frequently observed phenomena such as structural rearrangements, cooperative adsorption, overshooting adsorption kinetics, or protein aggregation. In this review recent achievements and new perspectives on protein adsorption processes are comprehensively discussed. The main focus is put on commonly postulated mechanistic aspects and their translation into mathematical concepts and model descriptions. Relevant experimental and computational strategies to practically approach the field of protein adsorption mechanisms and their impact on current successes are outlined. Copyright © 2011 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interpretation of protein adsorption: surface-induced conformational changes.

            Protein adhesion plays a major role in determining the biocompatibility of materials. The first stage of implant integration is the adhesion of protein followed by cell attachment. Surface modification of implants (surface chemistry and topography) to induce and control protein and cell adhesion is currently of great interest. This communication presents data on protein adsorption (bovine serum albumin and fibrinogen) onto model hydrophobic (CH(3)) and hydrophilic (OH) surfaces, investigated using a quartz crystal microbalance (QCM) and grazing angle infrared spectroscopy. Our data suggest that albumin undergoes adsorption via a single step whereas fibrinogen adsorption is a more complex, multistage process. Albumin has a stronger affinity toward the CH(3) compared to OH terminated surface. In contrast, fibrinogen adheres more rapidly to both surfaces, having a slightly higher affinity toward the hydrophobic surface. Conformational assessment of the adsorbed proteins by grazing angle infrared spectroscopy (GA-FTIR) shows that after an initial 1 h incubation few further time-dependent changes are observed. Both proteins exhibited a less organized secondary structure upon adsorption onto a hydrophobic surface than onto a hydrophilic surface, with the effect observed greatest for albumin. This study demonstrates the ability of simple tailor-made monochemical surfaces to influence binding rates and conformation of bound proteins through protein-surface interactions. Current interest in biocompatible materials has focused on surface modifications to induce rapid healing, both of implants and for wound care products. This effect may also be of significance at the next stage of implant integration, as cell adhesion occurs through the surface protein layer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural and immunologic characterization of bovine, horse, and rabbit serum albumins.

              Serum albumin (SA) is the most abundant plasma protein in mammals. SA is a multifunctional protein with extraordinary ligand binding capacity, making it a transporter molecule for a diverse range of metabolites, drugs, nutrients, metals and other molecules. Due to its ligand binding properties, albumins have wide clinical, pharmaceutical, and biochemical applications. Albumins are also allergenic, and exhibit a high degree of cross-reactivity due to significant sequence and structure similarity of SAs from different organisms. Here we present crystal structures of albumins from cattle (BSA), horse (ESA) and rabbit (RSA) sera. The structural data are correlated with the results of immunological studies of SAs. We also analyze the conservation or divergence of structures and sequences of SAs in the context of their potential allergenicity and cross-reactivity. In addition, we identified a previously uncharacterized ligand binding site in the structure of RSA, and calcium binding sites in the structure of BSA, which is the first serum albumin structure to contain metal ions. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                27 October 2015
                2015
                : 10
                : 10
                : e0141282
                Affiliations
                [1 ]Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
                [2 ]Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
                [3 ]Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
                Martin-Luther-Universität Halle-Wittenberg, GERMANY
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HP SB KR MS JB. Performed the experiments: HP KR. Analyzed the data: HP SB KR MS JB. Contributed reagents/materials/analysis tools: SB MS. Wrote the paper: HP SB KR MS JB.

                Article
                PONE-D-15-20594
                10.1371/journal.pone.0141282
                4624694
                26505481
                293977ab-6e1d-4068-831a-19657cee4fb8
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 12 May 2015
                : 5 October 2015
                Page count
                Figures: 7, Tables: 2, Pages: 20
                Funding
                Funding for this work was provided by the National Science Foundation ( www.nsf.gov) (award CBET-1149242 to SB and award EPS-1004094 to MS). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article