1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Switchable aptamer-fueled colorimetric sensing toward agricultural fipronil exposure sensitized with affiliative metal-organic framework

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Advances in metal–organic framework coatings: versatile synthesis and broad applications

          This review article summarizes the recent advances in versatile synthesis strategies and broad applications of metal–organic framework coatings. Metal–organic frameworks (MOFs) as a new kind of porous crystalline materials have attracted much interest in many applications due to their high porosity, diverse structures, and controllable chemical structures. However, the specific geometrical morphologies, limited functions and unsatisfactory performances of pure MOFs hinder their further applications. In recent years, an efficient approach to synthesize new composites to overcome the above issues has been achieved, by integrating MOF coatings with other functional materials, which have synergistic advantages in many potential applications, including batteries, supercapacitors, catalysis, gas storage and separation, sensors, drug delivery/cytoprotection and so on. Nevertheless, the systemic synthesis strategies and the relationships between their structures and application performances have not been reviewed comprehensively yet. This review emphasizes the recent advances in versatile synthesis strategies and broad applications of MOF coatings. A comprehensive discussion of the fundamental chemistry, classifications and functions of MOF coatings is provided first. Next, by modulating the different states ( e.g. solid, liquid, and gas) of metal ion sources and organic ligands, the synthesis methods for MOF coatings on functional materials are systematically summarized. Then, many potential applications of MOF coatings are highlighted and their structure–property correlations are discussed. Finally, the opportunities and challenges for the future research of MOF coatings are proposed. This review on the deep understanding of MOF coatings will bring better directions into the rational design of high-performance MOF-based materials and open up new opportunities for MOF applications.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nanomaterials for sensing and destroying pesticides.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Detection of SARS-CoV-2 and Its Mutated Variants via CRISPR-Cas13-Based Transcription Amplification

              The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global health emergency, and its gene mutation and evolution further posed uncertainty of epidemic risk. Herein, we reported a light-up CRISPR-Cas13 transcription amplification method, which enables the detection of SARS-CoV-2 and its mutated variants. Sequence specificity was ensured by both the ligation process and Cas13a/crRNA recognition, allowing us to identify viral RNA mutation. Light-up RNA aptamer allows sensitive output of amplification signals via target-activated ribonuclease activity of CRISPR-Cas13a. The RNA virus assay has been designed to detect coronavirus, SARS-CoV-2, Middle East respiratory syndrome (MERS), and SARS, as well as the influenza viruses such as, H1N1, H7N9, and H9N2. It was accommodated to sense as low as 82 copies of SARS-CoV-2. Particularly, it allowed us to strictly discriminate key mutation of the SARS-CoV-2 variant, D614G, which may induce higher epidemic and pathogenetic risk. The proposed RNA virus assays are promising for point-of-care monitoring of SARS-CoV-2 and its risking variants.
                Bookmark

                Author and article information

                Journal
                Food Chemistry
                Food Chemistry
                Elsevier BV
                03088146
                May 2023
                May 2023
                : 407
                : 135115
                Article
                10.1016/j.foodchem.2022.135115
                36508865
                29192e1e-b9db-4f6b-9a5c-63b0de3de9cb
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article