6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Persistent changes in peripheral and spinal nociceptive processing after early tissue injury

      , ,
      Experimental Neurology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has become clear that tissue damage during a critical period of early life can result in long-term changes in pain sensitivity, but the underlying mechanisms remain to be fully elucidated. Here we review the clinical and preclinical evidence for persistent alterations in nociceptive processing following neonatal tissue injury, which collectively point to the existence of both a widespread hypoalgesia at baseline as well as an exacerbated degree of hyperalgesia following a subsequent insult to the same somatotopic region. We also highlight recent work investigating the effects of early trauma on the organization and function of ascending pain pathways at a cellular and molecular level. These effects of neonatal injury include altered ion channel expression in both primary afferent and spinal cord neurons, shifts in the balance between synaptic excitation and inhibition within the superficial dorsal horn (SDH) network, and a 'priming' of microglial responses in the adult SDH. A better understanding of how early tissue damage influences the maturation of nociceptive circuits could yield new insight into strategies to minimize the long-term consequences of essential, but invasive, medical procedures on the developing somatosensory system.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Physiology of microglia.

          Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microglia: active sensor and versatile effector cells in the normal and pathologic brain.

            Microglial cells constitute the resident macrophage population of the CNS. Recent in vivo studies have shown that microglia carry out active tissue scanning, which challenges the traditional notion of 'resting' microglia in the normal brain. Transformation of microglia to reactive states in response to pathology has been known for decades as microglial activation, but seems to be more diverse and dynamic than ever anticipated--in both transcriptional and nontranscriptional features and functional consequences. This may help to explain why engagement of microglia can be either neuroprotective or neurotoxic, resulting in containment or aggravation of disease progression. Moreover, little is known about the heterogeneity of microglial responses in different pathologic contexts that results from regional adaptations or from the progression of a disease. In this review, we focus on several key observations that illustrate the multi-faceted activities of microglia in the normal and pathologic brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Persistent postsurgical pain: risk factors and prevention.

              Acute postoperative pain is followed by persistent pain in 10-50% of individuals after common operations, such as groin hernia repair, breast and thoracic surgery, leg amputation, and coronary artery bypass surgery. Since chronic pain can be severe in about 2-10% of these patients, persistent postsurgical pain represents a major, largely unrecognised clinical problem. Iatrogenic neuropathic pain is probably the most important cause of long-term postsurgical pain. Consequently, surgical techniques that avoid nerve damage should be applied whenever possible. Also, the effect of aggressive, early therapy for postoperative pain should be investigated, since the intensity of acute postoperative pain correlates with the risk of developing a persistent pain state. Finally, the role of genetic factors should be studied, since only a proportion of patients with intraoperative nerve damage develop chronic pain. Based on information about the molecular mechanisms that affect changes to the peripheral and central nervous system in neuropathic pain, several opportunities exist for multimodal pharmacological intervention. Here, we outline strategies for identification of patients at risk and for prevention and possible treatment of this important entity of chronic pain.
                Bookmark

                Author and article information

                Journal
                Experimental Neurology
                Experimental Neurology
                Elsevier BV
                00144886
                January 2016
                January 2016
                : 275
                : 253-260
                Article
                10.1016/j.expneurol.2015.06.020
                4686380
                26103453
                290c221b-11c9-43ed-9a82-8641dfe2c57a
                © 2016

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article