18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Contactin-1 IgG4 antibodies cause paranode dismantling and conduction defects

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype

          Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an inflammatory neuropathy, classically characterised by a slowly progressive onset and symmetrical, sensorimotor involvement. However, there are many phenotypic variants, suggesting that CIDP may not be a discrete disease entity but rather a spectrum of related conditions. While the abiding theory of CIDP pathogenesis is that cell-mediated and humoral mechanisms act together in an aberrant immune response to cause damage to peripheral nerves, the relative contributions of T cell and autoantibody responses remain largely undefined. In animal models of spontaneous inflammatory neuropathy, T cell responses to defined myelin antigens are responsible. In other human inflammatory neuropathies, there is evidence of antibody responses to Schwann cell, compact myelin or nodal antigens. In this review, the roles of the cellular and humoral immune systems in the pathogenesis of CIDP will be discussed. In time, it is anticipated that delineation of clinical phenotypes and the underlying disease mechanisms might help guide diagnostic and individualised treatment strategies for CIDP.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin.

            Myelinated fibers are organized into distinct domains that are necessary for saltatory conduction. These domains include the nodes of Ranvier and the flanking paranodal regions where glial cells closely appose and form specialized septate-like junctions with axons. These junctions contain a Drosophila Neurexin IV-related protein, Caspr/Paranodin (NCP1). Mice that lack NCP1 exhibit tremor, ataxia, and significant motor paresis. In the absence of NCP1, normal paranodal junctions fail to form, and the organization of the paranodal loops is disrupted. Contactin is undetectable in the paranodes, and K(+) channels are displaced from the juxtaparanodal into the paranodal domains. Loss of NCP1 also results in a severe decrease in peripheral nerve conduction velocity. These results show a critical role for NCP1 in the delineation of specific axonal domains and the axon-glia interactions required for normal saltatory conduction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibodies to contactin-1 in chronic inflammatory demyelinating polyneuropathy.

              Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a frequent autoimmune neuropathy with a heterogeneous clinical spectrum. Clinical and experimental evidence suggests that autoantibodies may be involved in its pathogenesis, but the target antigens are unknown. Axoglial junction proteins have been proposed as candidate antigens. We examined the reactivity of CIDP patients' sera against neuronal antigens and used immunoprecipitation for antigen unraveling. Primary cultures of hippocampal neurons were used to select patients' sera that showed robust reactivity with the cell surface of neurons. The identity of the antigens was established by immunoprecipitation and mass spectrometry, and subsequently confirmed with cell-based assays, immunohistochemistry with teased rat sciatic nerve, and immunoabsorption experiments. Four of 46 sera from patients with CIDP reacted strongly against hippocampal neurons (8.6%) and paranodal structures on peripheral nerve. Two patients' sera precipitated contactin-1 (CNTN1), and 1 precipitated both CNTN1 and contactin-associated protein 1 (CASPR1). Reactivity against CNTN1 was confirmed in 2 cases, whereas the third reacted only when CNTN1 and CASPR1 were cotransfected. No other CIDP patient or any of the 104 controls with other neurological diseases tested positive. All 3 patients shared common clinical features, including advanced age, predominantly motor involvement, aggressive symptom onset, early axonal involvement, and poor response to intravenous immunoglobulin. Antibodies against the CNTN1/CASPR1 complex occur in a subset of patients with CIDP who share common clinical features. The finding of this biomarker may help to explain the symptoms of these patients and the heterogeneous response to therapy in CIDP. Copyright © 2012 American Neurological Association.
                Bookmark

                Author and article information

                Journal
                Brain
                Brain
                Oxford University Press (OUP)
                0006-8950
                1460-2156
                May 27 2016
                June 26 2016
                : 139
                : 6
                : 1700-1712
                Article
                10.1093/brain/aww062
                27017186
                28ecd966-2263-48bc-bfe2-4fbc4d692440
                © 2016
                History

                Comments

                Comment on this article