31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The exosome journey: from biogenesis to uptake and intracellular signalling

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The use of exosomes in clinical settings is progressively becoming a reality, as clinical trials testing exosomes for diagnostic and therapeutic applications are generating remarkable interest from the scientific community and investors. Exosomes are small extracellular vesicles secreted by all cell types playing intercellular communication roles in health and disease by transferring cellular cargoes such as functional proteins, metabolites and nucleic acids to recipient cells. An in-depth understanding of exosome biology is therefore essential to ensure clinical development of exosome based investigational therapeutic products. Here we summarise the most up-to-date knowkedge about the complex biological journey of exosomes from biogenesis and secretion, transport and uptake to their intracellular signalling. We delineate the major pathways and molecular players that influence each step of exosome physiology, highlighting the routes of interest, which will be of benefit to exosome manipulation and engineering. We highlight the main controversies in the field of exosome research: their adequate definition, characterisation and biogenesis at plasma membrane. We also delineate the most common identified pitfalls affecting exosome research and development. Unravelling exosome physiology is key to their ultimate progression towards clinical applications.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12964-021-00730-1.

          Related collections

          Most cited references201

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

          ABSTRACT The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biology, function, and biomedical applications of exosomes

            The study of extracellular vesicles (EVs) has the potential to identify unknown cellular and molecular mechanisms in intercellular communication and in organ homeostasis and disease. Exosomes, with an average diameter of ~100 nanometers, are a subset of EVs. The biogenesis of exosomes involves their origin in endosomes, and subsequent interactions with other intracellular vesicles and organelles generate the final content of the exosomes. Their diverse constituents include nucleic acids, proteins, lipids, amino acids, and metabolites, which can reflect their cell of origin. In various diseases, exosomes offer a window into altered cellular or tissue states, and their detection in biological fluids potentially offers a multicomponent diagnostic readout. The efficient exchange of cellular components through exosomes can inform their applied use in designing exosome-based therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.

              Exosomes are vesicles of endocytic origin released by many cells. These vesicles can mediate communication between cells, facilitating processes such as antigen presentation. Here, we show that exosomes from a mouse and a human mast cell line (MC/9 and HMC-1, respectively), as well as primary bone marrow-derived mouse mast cells, contain RNA. Microarray assessments revealed the presence of mRNA from approximately 1300 genes, many of which are not present in the cytoplasm of the donor cell. In vitro translation proved that the exosome mRNAs were functional. Quality control RNA analysis of total RNA derived from exosomes also revealed presence of small RNAs, including microRNAs. The RNA from mast cell exosomes is transferable to other mouse and human mast cells. After transfer of mouse exosomal RNA to human mast cells, new mouse proteins were found in the recipient cells, indicating that transferred exosomal mRNA can be translated after entering another cell. In summary, we show that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location. We propose that this RNA is called "exosomal shuttle RNA" (esRNA).
                Bookmark

                Author and article information

                Contributors
                sonam.gurung@ucl.ac.uk
                d.perocheau@ucl.ac.uk
                loukia.touramanidou.17@ucl.ac.uk
                j.baruteau@ucl.ac.uk
                Journal
                Cell Commun Signal
                Cell Commun Signal
                Cell Communication and Signaling : CCS
                BioMed Central (London )
                1478-811X
                23 April 2021
                23 April 2021
                2021
                : 19
                : 47
                Affiliations
                [1 ]GRID grid.83440.3b, ISNI 0000000121901201, Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, , University College London, ; London, UK
                [2 ]GRID grid.424537.3, ISNI 0000 0004 5902 9895, Metabolic Medicine Department, , Great Ormond Street Hospital for Children NHS Foundation Trust, ; London, UK
                Author information
                http://orcid.org/0000-0003-0582-540X
                Article
                730
                10.1186/s12964-021-00730-1
                8063428
                33892745
                28b7d677-7c20-4797-aab9-9425bf8f7cb2
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 9 November 2020
                : 25 February 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000265, Medical Research Council;
                Award ID: MR/T008024/1
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100006041, Innovate UK;
                Award ID: 14720
                Award Recipient :
                Funded by: London Advanced Therapy / Confidence in Collaboration award
                Award ID: 2CiC017
                Award Recipient :
                Funded by: Nutricia Metabolic Research Grant
                Categories
                Review
                Custom metadata
                © The Author(s) 2021

                Cell biology
                exosomes,extracellular vesicles,intercellular communication,targeting,multivesicular bodies,tetraspanins,lipid rafts,rab gtpases,endocytosis

                Comments

                Comment on this article