42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genistein Inhibits Osteoclastic Differentiation of RAW 264.7 Cells via Regulation of ROS Production and Scavenging

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genistein, a phytoestrogen, has been demonstrated to have a bone-sparing and antiresorptive effect. Genistein can inhibit the osteoclast formation of receptor activator of nuclear factor-κB ligand (RANKL)-induced RAW 264.7 cells by preventing the translocation of nuclear factor-κB (NF-κB), a redox-sensitive factor, to the nucleus. Therefore, the suppressive effect of genistein on the reactive oxygen species (ROS) level during osteoclast differentiation and the mechanism associated with the control of ROS levels by genistein were investigated. The cellular antioxidant capacity and inhibitory effect of genistein were confirmed. The translation and activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (Nox1), as well as the disruption of the mitochondrial electron transport chain system were obviously suppressed by genistein in a dose-dependent manner. The induction of phase II antioxidant enzymes, such as superoxide dismutase 1 (SOD1) and heme oxygenase-1 (HO-1), was enhanced by genistein. In addition, the translational induction of nuclear factor erythroid 2-related factor 2 (Nrf2) was notably increased by genistein. These results provide that the inhibitory effects of genistein on RANKL-stimulated osteoclast differentiation is likely to be attributed to the control of ROS generation through suppressing the translation and activation of Nox1 and the disruption of the mitochondrial electron transport chain system, as well as ROS scavenging through the Nrf2-mediated induction of phase II antioxidant enzymes, such as SOD1 and HO-1.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element.

          The transcription factor Nrf2, which normally exists in an inactive state as a consequence of binding to a cytoskeleton-associated protein Keap1, can be activated by redox-dependent stimuli. Alteration of the Nrf2-Keap1 interaction enables Nrf2 to translocate to the nucleus, bind to the antioxidant-responsive element (ARE) and initiate the transcription of genes coding for detoxifying enzymes and cytoprotective proteins. This response is also triggered by a class of electrophilic compounds including polyphenols and plant-derived constituents. Recently, the natural antioxidants curcumin and caffeic acid phenethyl ester (CAPE) have been identified as potent inducers of haem oxygenase-1 (HO-1), a redox-sensitive inducible protein that provides protection against various forms of stress. Here, we show that in renal epithelial cells both curcumin and CAPE stimulate the expression of Nrf2 in a concentration- and time-dependent manner. This effect was associated with a significant increase in HO-1 protein expression and haem oxygenase activity. From several lines of investigation we also report that curcumin (and, by inference, CAPE) stimulates ho-1 gene activity by promoting inactivation of the Nrf2-Keap1 complex, leading to increased Nrf2 binding to the resident ho-1 AREs. Moreover, using antibodies and specific inhibitors of the mitogen-activated protein kinase (MAPK) pathways, we provide data implicating p38 MAPK in curcumin-mediated ho-1 induction. Taken together, these results demonstrate that induction of HO-1 by curcumin and CAPE requires the activation of the Nrf2/ARE pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer preventive effects of flavonoids--a review.

            A cancer protective effect from plant-derived foods has been found with uncommon consistency in epidemiologic studies. However, it has been difficult to identify specific components responsible for this effect. Many phytochemicals have been shown to be biologically active and they may interact to protect against cancer. In recent years, experimental studies have provided growing evidence for the beneficial action of flavonoids on multiple cancer-related biological pathways (carcinogen bioactivation, cell-signaling, cell cycle regulation, angiogenesis, oxidative stress, inflammation). Although the epidemiologic data on flavonoids and cancer are still limited and conflicting, some protective associations have been suggested for flavonoid-rich foods (soy and premenopausal breast cancer; green tea and stomach cancer; onion and lung cancer). This review focuses on the biological effects of the main flavonoids, as well as the epidemiologic evidence that support their potential cancer protective properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling.

              Increasingly natural products particularly flavonoids are being explored for their therapeutic potentials in reducing bone loss and maintaining bone health. This study has reviewed previous studies on the two better known flavonoids, genistein and icariin, their structures, functions, action mechanisms, relative potency, and potential application in regulating bone remodeling and preventing bone loss. Genistein, an isoflavone abundant in soy, has dual functions on bone cells, able to inhibit bone resorption activity of osteoclasts and stimulate osteogenic differentiation and maturation of bone marrow stromal progenitor cells (BMSCs) and osteoblasts. Genistein is an estrogen receptor (ER)-selective binding phytoestrogen, with a greater affinity to ERβ. Genistein inhibits tyrosine kinases and inhibits DNA topoisomerases I and II, and may act as an antioxidant. Genistein enhances osteoblastic differentiation and maturation by activation of ER, p38MAPK-Runx2, and NO/cGMP pathways, and it inhibits osteoclast formation and bone resorption through inducing osteoclastogenic inhibitor osteoprotegerin (OPG) and blocking NF-κB signaling. Icariin, a prenylated flavonol glycoside isolated from Epimedium herb, stimulates osteogenic differentiation of BMSCs and inhibits bone resorption activity of osteoclasts. Icariin, whose metabolites include icariside I, icariside II, icaritin, and desmethylicaritin, has no estrogenic activity. However, icariin is more potent than genistein in promoting osteogenic differentiation and maturation of osteoblasts. The existence of a prenyl group on C-8 of icariin molecular structure has been suggested to be the reason why icariin is more potent than genistein in osteogenic activity. Thus, the prenylflavonoids may represent a class of flavonoids with a higher osteogenic activity. Copyright © 2012 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                12 June 2014
                June 2014
                : 15
                : 6
                : 10605-10621
                Affiliations
                Department of Food and Nutrition, Hannam University, Daejeon 305-811, Korea; E-Mails: blackbean10@ 123456naver.com (S.-H.L.); kikkne@ 123456naver.com (J.-K.K.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: haedong@ 123456hnu.kr ; Tel.: +82-42-629-8795; Fax: +82-42-629-8805.
                Article
                ijms-15-10605
                10.3390/ijms150610605
                4100171
                24927148
                28b0abb7-38df-49ac-8e99-2ea965560835
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 11 February 2014
                : 22 May 2014
                : 30 May 2014
                Categories
                Article

                Molecular biology
                genistein,osteoclastic differentiation,reactive oxygen species,nox1,mitochondrial electron transport chain system,phase ii antioxidant enzymes

                Comments

                Comment on this article