Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design and fabrication of a passive droplet dispenser for portable high resolution imaging system

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Moldless lens manufacturing techniques using standard droplet dispensing technology often require precise control over pressure to initiate fluid flow and control droplet formation. We have determined a series of interfacial fluid parameters optimised using standard 3D printed tools to extract, dispense and capture a single silicone droplet that is then cured to obtain high quality lenses. The dispensing process relies on the recapitulation of liquid dripping action (Rayleigh-Plateau instability) and the capturing method uses the interplay of gravitational force, capillary forces and liquid pinning to control the droplet shape. The key advantage of the passive lens fabrication approach is rapid scale-up using 3D printing by avoiding complex dispensing tools. We characterise the quality of the lenses fabricated using the passive approach by measuring wavefront aberration and high resolution imaging. The fabricated lenses are then integrated into a portable imaging system; a wearable thimble imaging device with a detachable camera housing, that is constructed for field imaging. This paper provides the full exposition of steps, from lens fabrication to imaging platform, necessary to construct a standalone high resolution imaging system. The simplicity of our methodology can be implemented using a regular desktop 3D printer and commercially available digital imaging systems.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          On the Capillary Phenomena of Jets

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wide-field, high-resolution Fourier ptychographic microscopy

            In this article, we report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope’s depth-of-focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 μm, a field-of-view of ~120 mm2, and a resolution-invariant depth-of-focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify FPM’s successful operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system’s optics to one that is solvable through computation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamic population mapping using mobile phone data.

              During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                27 January 2017
                2017
                : 7
                : 41482
                Affiliations
                [1 ]Research School of Engineering, College of Engineering and Computer Science, The Australian National University , Canberra, ACT 2601, Australia
                [2 ]Plant Biosecurity Cooperative, Research Centre , LPO Box 5012, Bruce, ACT 2617, Australia
                [3 ]Australia Research Council Centre of Excellence in Advanced Molecular Imaging, Australian National University , Australia
                Author notes
                Article
                srep41482
                10.1038/srep41482
                5269729
                28128365
                289129f1-54c4-491a-9b75-51c9005bb2fb
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 22 June 2016
                : 20 December 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content87

                Cited by4

                Most referenced authors302