Methicillin-resistant Staphylococcus aureus is a ubiquitous pathogen, posing a serious threat to human health worldwide. Thus, there is a high demand for antibiotics with distinct targets. Caseinolytic protease P (ClpP) is a promising target for combating staphylococcal infections; however, selectively activating S. aureus ClpP ( SaClpP) rather than Homo sapiens ClpP ( HsClpP) remains challenging. Herein, we rationally design and identify ZG297 by structure-based strategy. It binds and activates SaClpP instead of HsClpP. This is due to differentiated ligand binding attributed to crossed “tyrosine/histidine” amino acid pairs. ZG297 substantially inhibits the growth of a broad panel of S. aureus strains in vitro, outperforming the selective ( R)-ZG197 agonist. ZG297 also functions as a potent antibiotic against multidrug-resistant S. aureus infections in Galleria mellonella larvae, zebrafish, murine skin, and thigh infection models. Collectively, we demonstrate that ZG297 is a safer and more potent antistaphylococcal agent than acyldepsipeptide 4 and ( R)-ZG197.
Zhang et al. identify a selective SaClpP agonist ZG297 that exhibits superior antistaphylococcal activities in vitro and in vivo. The reversed “tyrosine/histidine” pair in SaClpP and HsClpP is required for achieving selective activation on SaClpP. The study reports the development of selective and potent SaClpP agonists as antistaphylococcal agents.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.