9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural Design for EMI Shielding: From Underlying Mechanisms to Common Pitfalls

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Modern human civilization deeply relies on the rapid advancement of cutting‐edge electronic systems that have revolutionized communication, education, aviation, and entertainment. However, the electromagnetic interference (EMI) generated by digital systems poses a significant threat to the society, potentially leading to a future crisis. While numerous efforts are made to develop nanotechnological shielding systems to mitigate the detrimental effects of EMI, there is limited focus on creating absorption‐dominant shielding solutions. Achieving absorption‐dominant EMI shields requires careful structural design engineering, starting from the smallest components and considering the most effective electromagnetic wave attenuating factors. This review offers a comprehensive overview of shielding structures, emphasizing the critical elements of absorption‐dominant shielding design, shielding mechanisms, limitations of both traditional and nanotechnological EMI shields, and common misconceptions about the foundational principles of EMI shielding science. This systematic review serves as a scientific guide for designing shielding structures that prioritize absorption, highlighting an often‐overlooked aspect of shielding science.

          Related collections

          Most cited references275

          • Record: found
          • Abstract: found
          • Article: not found

          The chemistry and applications of metal-organic frameworks.

          Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electromagnetic interference shielding with 2D transition metal carbides (MXenes)

            Materials with good flexibility and high conductivity that can provide electromagnetic interference (EMI) shielding with minimal thickness are highly desirable, especially if they can be easily processed into films. Two-dimensional metal carbides and nitrides, known as MXenes, combine metallic conductivity and hydrophilic surfaces. Here, we demonstrate the potential of several MXenes and their polymer composites for EMI shielding. A 45-micrometer-thick Ti3C2Tx film exhibited EMI shielding effectiveness of 92 decibels (>50 decibels for a 2.5-micrometer film), which is the highest among synthetic materials of comparable thickness produced to date. This performance originates from the excellent electrical conductivity of Ti3C2Tx films (4600 Siemens per centimeter) and multiple internal reflections from Ti3C2Tx flakes in free-standing films. The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam.

              The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated. Simply via physical compression, the microwave absorption performance can be tuned. The qualified bandwidth coverage of 93.8% (60.5 GHz/64.5 GHz) is achieved for the GF under 90% compressive strain (1.0 mm thickness). This mainly because of the 3D conductive network.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advanced Materials
                Advanced Materials
                Wiley
                0935-9648
                1521-4095
                June 2024
                March 27 2024
                June 2024
                : 36
                : 24
                Affiliations
                [1 ] Nanomaterials and Polymer Nanocomposites Laboratory School of Engineering University of British Columbia Kelowna BC V1V 1V7 Canada
                [2 ] Basque Centre for Materials, Applications and Nanostructures (BCMaterials) Bld. Martina Casiano 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n Leioa 48940 Spain
                [3 ] IKERBASQUE Basque Foundation for Science Bilbao 48013 Spain
                Article
                10.1002/adma.202310683
                285e5da2-2265-4830-ba99-119faf85a910
                © 2024

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article

                scite_
                72
                0
                11
                0
                Smart Citations
                72
                0
                11
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content336

                Cited by10

                Most referenced authors3,278